Advertisement

Virtual Reality-Based Time-Delayed Haptic Teleoperation Using Point Cloud Data

  • David Valenzuela-UrrutiaEmail author
  • Rodrigo Muñoz-Riffo
  • Javier Ruiz-del-Solar
Article
  • 9 Downloads

Abstract

This paper presents a methodology for bilateral teleoperation of robots based on the use of point cloud data obtained with an RGB-D camera for providing haptic feedback, as well as a virtual robot workspace that allows the user to interact with the teleoperated robot and the environment, regardless of the time-delay between the master device and the slave robot. The robot movements are executed first in the Virtual Workspace and then in the real one. The Virtual Workspace is created using point cloud data, and the haptic feedback is calculated directly using this data. The proposed methodology was validated in 2D and 3D trajectory-following experiments with 20 volunteers each teleoperating a KUKA industrial robot. In addition, we studied two inverse kinematic teleoperation modes: “Proportional Workspace” and “Delta end-effector movements”, with the objective of determining which one is more suitable for the haptic teleoperation methodology proposed. The results obtained confirm that the proposed haptic teleoperation methodology enhances the precision of the operator by reducing the average error between the robot end-effector trajectory and the goal trajectory. Furthermore, the likelihood that the end-effector will collide with objects in the environment is reduced. The methodology also diminishes the time that it takes to complete the trajectory-following task in an unknown workspace. The inverse kinematic teleoperation mode with the better results is the “Proportional Workspace”, which is more intuitive for operators (users).

Keywords

Haptic teleoperation Point-cloud based haptic feedback Virtual robot workspace Time-delayed teleoperation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Schiele, A., Krüger, T., Kimmer, S., Aiple, M., Rebelo, J., Smisek, J., den Exter, E., Mattheson, E., Hernandez, A., van der Hulst, F.: Haptics-2 — A system for bilateral control experiments from space to ground via geosynchronous satellites, IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 892–897 (2016)Google Scholar
  3. 3.
    National Aeronautics and Space Administration Goddard Space Flight Center: Satellite servicing capabilities office. [Online]. Available: http://ssco.gsfc.nasa.gov/ (2015)
  4. 4.
    Kraft, R., 13-046, D. Washington.: NASA press release NASA’s refueling demonstration proves viability of satellite-servicing technologies, Technical report NASA (2013)Google Scholar
  5. 5.
    Joppin, C., Hastings, D.E.: On-orbit upgrade and repair: The Hubble Space Telescope example. J. Spacecr. Rocket. 43(3), 614–625 (2006)CrossRefGoogle Scholar
  6. 6.
    Lanzerotti, L.J.: Assessment of options for extending the life of the Hubble Space Telescope: Final Report, National Academy Press (2005)Google Scholar
  7. 7.
    Stoll, E., Letschnik, J., Walter, U., Artigas, J., Kremer, P., Preusche, C., Hirzinger, G.: On-orbit servicing. IEEE Robot. Autom. Mag. 16(4), 29–33 (2009)CrossRefGoogle Scholar
  8. 8.
    Duff, E., Caris, C., Bonchis, A., Taylor, K., Gunn, C., Adcock, M.: The development of a telerobotic rock breaker. Springer Tracts in Advanced Robotics 62, 411–420 (2010)CrossRefGoogle Scholar
  9. 9.
    Boeing, A.: A remotely operated robotic rock breaker with collision avoidance for the mining industry. In: Proceedings of the 30th international association for automation and robotics in construction, pp 875–884 (2013)Google Scholar
  10. 10.
    Uzunoğlu, E., Mehmet İsmet, CD: Extending model-mediation method to multi-degree-of-freedom teleoperation systems experiencing time delays in communication Robotica, pp 1–16. Cambridge University Press, Cambridge (2015)Google Scholar
  11. 11.
    Ju, Z., Yang, C., Li, Z., Cheng, L., Ma, H.: Teleoperation of humanoid baxter robot using haptic feedback, Intl. conference on multisensor fusion and information integration for intelligent systems, pp. 1-6 September (2014)Google Scholar
  12. 12.
    Leeper, A., Hsiao, K., Ciocarlie, M., Sucan, I., Salisbury, K.: Methods for collision-free arm teleoperation in clutter using constraints from 3d sensor data, Intl. Conference on Humanoid Robots, pp. 520–527 (2013)Google Scholar
  13. 13.
    Mitra, P., Niemeyer, G.: Model-mediated telemanipulation. Int. J. Robot. Res. 27(2), 253–262 (2008)CrossRefGoogle Scholar
  14. 14.
    Vozar, S., Leonard, S., Kazanzides, P., Whitcomb, L.: Experimental evaluation of force control for virtual-fixture-assisted teleoperation for on-orbit manipulation of satellite thermal blanket insulation, IEEE international conference on robotics and automation (ICRA), pp. 4424–4431 (2015)Google Scholar
  15. 15.
    Xia, T., Leonard, S., Kandaswamy, I., Blank, A., Whitcomb, L., Kazanzides, P.: Model-based telerobotic control with virtual fixtures for satellite servicing tasks, IEEE international conference on robotics and automation (ICRA), pp. 1479,1484 (2013)Google Scholar
  16. 16.
    Xia, T., Leonard, S., Deguet, A., Whitcomb, L., Kazanzides, P.: Augmented reality environment with virtual fixtures for robotic telemanipulation in space, IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 5059–5064 (2012)Google Scholar
  17. 17.
    Zainan, J., Hong, L., Jie, W., Jianbin, H.: Virtual reality-based teleoperation with robustness against modeling errors. Chin. J. Aeronaut. 22(3), 325–333 (2009)CrossRefGoogle Scholar
  18. 18.
    Jiang, Z., Liu, Y., Liu, H., Zou, J: Flexible virtual fixture enhanced by vision and haptics for unstructured environment teleoperation, IEEE international conference on robotics and biomimetics (ROBIO), pp. 2643–2648 (2013)Google Scholar
  19. 19.
    Mitra, P., Niemeyer, G.: Haptic simulation of manipulator collisions using dynamic proxies. Presence: Teleoperators and Virtual Environments 16(4), 367–384 (2007)CrossRefGoogle Scholar
  20. 20.
    El-Far, N., Georganas, N., El Saddik, A.: An algorithm for haptically rendering objects described by point clouds, Canadian conference on electrical and computer engineering, pp. 1443–1448 (2008)Google Scholar
  21. 21.
    Rydén, F., Nia Kosari, S., Chizeck, H.: Proxy Method for Fast Haptic Rendering from Time Varying Point Clouds, Proc. IEEE/ RSJ Int’l Conf. intelligent robots and systems (IROS ‘12), pp. 2614–2619 (2011)Google Scholar
  22. 22.
    Rydén, F., Chizeck, H.: A proxy method for real-time 3-DOF haptic rendering of streaming point cloud data. IEEE Trans. Haptic 6(3), 257–267 (2013)CrossRefGoogle Scholar
  23. 23.
    Rydén, F., Stewart, A., Chizeck, H.: Advanced telerobotic underwater manipulation using virtual fixtures and haptic rendering, Oceans - San Diego, 2013, pp. 1–8 (2013)Google Scholar
  24. 24.
    Xu, X., Cizmeci, B., Al-Nuaimi, A., Steinbach, E.: Point cloud-based model-mediated teleoperation with dynamic and perception-based model updating. IEEE Trans. Instrum. Meas. 63(11), 2558–2569 (2014)CrossRefGoogle Scholar
  25. 25.
    Rusu, R., Cousins, S.: 3D is here: Point cloud library (PCL), IEEE intl. conference on robotics and automation (ICRA) (2011)Google Scholar
  26. 26.
    Sucan, I.A., Chitta, S.: MoveIt!, [Online] Available: http://moveit.ros.org
  27. 27.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A. Y.: ROS: an open-source robot operating system, Proc. open-source software workshop of the intl conference on robotics and automation (ICRA) (2009)Google Scholar
  28. 28.
    Chavent, P.: Rapport de stage de deuxième année, September, 2003. Available: http://paul.chavent.free.fr/kuka/doc/rapport.pdf
  29. 29.
    Chavent, P., Kuka Manuel du devellopeur, A.P.I.: Version 0.0.5, September, 2003. Available: http://paul.chavent.free.fr/kuka/doc/kuka_api_man_devl.pdf
  30. 30.
    Huang, K., Jiang, L., Smith, J., Chizeck, H.: Sensor-aided teleoperated grasping of transparent objects, IEEE international conference on robotics and automation (ICRA), pp. 4953–4959 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Electrical Engineering Department and the Advanced Mining Technology CenterUniversidad de ChileSantiagoChile

Personalised recommendations