Advertisement

A Cooperative Aerial Robotic Approach for Tracking and Estimating the 3D Position of a Moving Object by Using Pseudo-Stereo Vision

  • J. C. Trujillo
  • R. MunguíaEmail author
  • E. Ruiz-Velázquez
  • B. Castillo-Toledo
Article
  • 18 Downloads

Abstract

This work presents a system that allows a team of aerial robots to follow a dynamic object moving in three dimensions. The system is composed of two Quadcopters equipped each one with an onboard monocular camera. A control system is proposed whose main objective is to maintain a stable flight formation of the Quadcopters with respect to the moving object. During the flight trajectory of both robots, its yaw, as well as the pitch of the cameras, are controlled in order to perform the visual tracking of the moving object. In this case, a pseudo-stereo visual system is formed from the cooperation between the two robots. The relative position of the moving object, which is in turn necessary for controlling the flight formation, is determined by triangulation by mean of the pseudo-stereo visual system. A Kalman Filter is used for estimating the states of both Quadcopters and the moving object. The stability of the control laws is proved using Lyapunov theory, and the performance of the system is validated by computer simulations.

Keywords

Cooperative aerial robotics Control Estimation Pseudo-stereo vision 3D tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Dias, A., Almeida, J., Silva, E., Lima, P.: Uncertainty based multirobot cooperative triangulation. In: RoboCup Symposium 2014 Springer Verlag Lecture Notes in Artificial Intelligence (LNAI) (2014)Google Scholar
  2. 2.
    Dib, A., Zaidi, N., Siguerdidjane, H.: Robust control and visual servoing of an UAV. In: Proceedings of the 17th World Congress The International Federation of Automatic Control. Seoul (2008)Google Scholar
  3. 3.
    Pirshayan, A., Seyedarabi, H., Haghipour, S.: Cooperative machine-vision-based tracking using multiple unmanned aerial vehicles. Adv. Comput. Sci.: Int. J. 3(2), 8 (2014)Google Scholar
  4. 4.
    Satici, A.C., Poonawala, H., Spong, M.W.: Robust optimal control of quadrotor UAVs. Digital Object Identifier,  https://doi.org/10.1109/ACCESS.2013.2260794
  5. 5.
    Emran, B.J., Yesildirek, A.: Robust nonlinear composite adaptive control of quadrotor. Int. J. Digit. Inf. Wireless Commun. 4(2), 45–57 (2014)Google Scholar
  6. 6.
    Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion a review of the state of the art. Inf. Fus. 14(1), 28–44 (2013)CrossRefGoogle Scholar
  7. 7.
    Deyst, J.J. Jr., Price, C.F.: Conditions for asymptotic stability of the discrete minimum-variance linear estimator. IEEE Trans. Autom. Control. 13(6), 702–705 (1968)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gallup, D., Frahm, J., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  9. 9.
    Wong, E.M., Bourgault, F., Furukawa, T.: Multi-vehicle Bayesian search for multiple lost targets, pp. 3169–3174 (2005)Google Scholar
  10. 10.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8, 3 (1992)CrossRefGoogle Scholar
  11. 11.
    Morbidi, F., Mariottini, G.L.: On active target tracking and cooperative localization for multiple aerial vehicles. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2229–2234 (2011)Google Scholar
  12. 12.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/Nonlinear \(H_{\infty }\) control for path tracking of a quadrotor unmanned aerial vehicle. American Control Conference (2008)Google Scholar
  13. 13.
    Asl, H.J.: Adaptive robust vision-based tracking control of quadrotor. Lect. Notes Inf. Theory 2, 3 (2014)Google Scholar
  14. 14.
    Jabbari, H., Oriolo, G., Bolandi, H.: An adaptive scheme for image-based visual servoing of an underactuated UAV. International Journal of Robotics and Automation (2013)Google Scholar
  15. 15.
    Bouadi, H., Bouchoucha, M., Tadjine, M.: Sliding mode control based on backstepping approach for an UAV type quadrotor. Int. J. Mech. Aerosp. Indus. Mechatron. Eng. 1(2), 60–65 (2007)Google Scholar
  16. 16.
    Capitan, J., Merino, L., Caballero, F., Ollero, A.: Decentralized delayed-state information filter (DDSIF): a new approach for cooperative decentralized tracking. Robot. Auton. Syst. 59, 376–388 (2011)CrossRefGoogle Scholar
  17. 17.
    de, J., Rubio, J., Member, IEEE, Zamudio, Z., Meda, J.A., Moreno, M.A.: Experimental vision regulation of a quadrotor. IEEE Latin Am. Trans. 13(8) (2015)Google Scholar
  18. 18.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall (1996)Google Scholar
  19. 19.
    Lanzisera, S., Zats, D., Pister, K.S.J.: Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sensors J. 11(3), 837–845 (2011)CrossRefGoogle Scholar
  20. 20.
    Luque Vega, L., Castillo T.B., Loukianov, A.G.: Robust block second order sliding mode control for a quadrotor. J. Franklin Inst. 349, 719–739 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ong, L., Upcroft, B., Bailey, T., Ridley, M., Sukkarieh, S., Whyte, H.D.: A decentralised particle filtering algorithm for multi target tracking across multiple flight vehicles. In: IROS, pp. 4539–4544 (2006)Google Scholar
  22. 22.
    Vásquez-Beltrán, A.M., Rodríguez-Cortés, H.: Seguimiento de una referencia visual en un plano con un cuatrirotor. Congreso Nacional de Control Automático AMCA (2015)Google Scholar
  23. 23.
    Mas, I., Petrovic, O., Kitts, C.: Cluster space specification and control of a 3 robot mobile system. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, pp. 3763–3768 (2008)Google Scholar
  24. 24.
    Ahmed, M., Subbarao, K.: Target tracking in 3-D using estimation based nonlinear control laws for UAVs. Aerospace-Aeronautics and Astronautics Journal (2016)Google Scholar
  25. 25.
    Metni, N., Hamel, T.: Visual tracking control of aerial robotic systems with adaptive depth estimation. Int. J. Control Autom. Syst. 5(1), 51–60 (2007)Google Scholar
  26. 26.
    Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5), 832–841 (2012)CrossRefGoogle Scholar
  27. 27.
    Beard, R., McLain, T., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniatureuavs. Proc. IEEE 94(7), 1306–1324 (2006)CrossRefGoogle Scholar
  28. 28.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn (2003)Google Scholar
  29. 29.
    Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: International Conference on Intelligent Robots and Systems. Beijing (2006)Google Scholar
  30. 30.
    Tayebi, A., McGilvray, S: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control System. Technol. 14, 562– 571 (2006)CrossRefGoogle Scholar
  31. 31.
    Xu, Z., Douillard, B., Morton, P., Vlaskine, V.: Towards collaborative multi-MAV-UGV teams for target tracking. In: 2012 Robotics Science and Systems Workshop Integration of Perception with Control and Navigation for Resource-Limited, Highly Dynamic, Autonomous Systems (2012)Google Scholar
  32. 32.
    Zhang, M., Liu, H.H.T.: Vision-based tracking and estimation of ground moving target using unmanned aerial vehicle. American Control Conference (2010)Google Scholar
  33. 33.
    Dobrokhodov, V.N., Isaac, I., Kevin, D., Kaminer, J.: Vision-based tracking and motion estimation for moving targets using small UAVs. Journal of Guidance Control and Dynamics (2008)Google Scholar
  34. 34.
    Wang, X., Zhu, H., Zhang, D., Zhou, D., Wang, X.: Vision-based detection and tracking of a mobile ground target using a fixed-wing UAVGoogle Scholar
  35. 35.
    Pirshayan, A., Seyedarabi, H., Haghipour, S.: Cooperative machine-vision-based tracking using multiple unmanned aerial vehicles. Adv. Comput. Sci.: Int. 3(2), 8 (2014)Google Scholar
  36. 36.
    Dias, A., Capitan, J., Merino, L., Almeida, J, Lima, P., Silva, E.: Decentralized target tracking based on multi-robot cooperative triangulation. IEEE Robotics and Automation Society’s flagship conference (2015)Google Scholar
  37. 37.
    Gurcuoglu, U., Puerto-Souza, G.A., Morbidi, F., Mariottini, G.L.: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)Google Scholar
  38. 38.
    Hausman, K., et al.: Cooperative occlusion-aware multi-robot target tracking using optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2015)Google Scholar
  39. 39.
    Kendall, A.G., Salvapantula, N.N., Stol, K.A.: On-board object tracking control of a quadcopter with monocular vision. In: International Conference on Unmanned Aircraft Systems (ICUAS). Orlando (2014)Google Scholar
  40. 40.
    Shtark, T., Gurfil, P.: Tracking a non-cooperative target using real-time stereovision-based control: an experimental study. Sensors 17, 735 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer Science, CUCEIUniversity of GuadalajaraGuadalajaraMexico
  2. 2.Center for Research and Graduate Studies (CINVESTAV)ZapopanMexico

Personalised recommendations