Advertisement

Sea Docking by Dual-eye Pose Estimation with Optimized Genetic Algorithm Parameters

  • Khin Nwe LwinEmail author
  • Myo Myint
  • Naoki Mukada
  • Daiki Yamada
  • Takayuki Matsuno
  • Kazuhiro Saitou
  • Waichiro Godou
  • Tatsuya Sakamoto
  • Mamoru Minami
Article
  • 8 Downloads

Abstract

Three-dimensional (3D) estimation of position and orientation (pose) using dynamic (successive) images input at video rates needs to be performed rapidly when the estimated pose is used for real-time feedback control. Single-camera 3D pose estimation has been studied thoroughly, but the estimated position accuracy in the camera depth of field has proven insufficient. Thus, docking systems for underwater vehicles with single-eye cameras have not reached practical application. The authors have proposed a new 3D pose estimation method with dual cameras that exploits the parallactic nature of stereoscopic vision to enable reliable 3D pose estimation in real time. We call this method the “real-time multi-step genetic algorithm (RM-GA).” However, optimization of the pose tracking performance has been left unchallenged despite the fact that improved tracking performance in the time domain would help improve performance and stability of the closed-loop feedback system, such as visual servoing of an underwater vehicle. This study focused on improving the dynamic performance of dual-eye real-time pose tracking by tuning RM-GA parameters and confirming optimization of the dynamical performance to estimate a target marker’s pose in real time. Then, the effectiveness and practicality of the real-time 3D pose estimation system was confirmed by conducting a sea docking experiment using the optimum RM-GA parameters in an actual marine environment with turbidity.

Keywords

Real-time multi-step GA Visual servoing Pose estimation Dual-eye tracking Underwater docking 

Notes

Acknowledgements

This work supported by JSPS KAKENHI Grant Number JP16K06183. The authors would like to thank Mitsui E&S Shipbuilding Co., Ltd.; and Kowa Corporation for their collaboration and support for this study. The authors would also like to express their thanks to Dr. Yuya Nishida, Prof. Kazuo Ishii, Prof. Toshihiko Maki, and Prof. Tamaki Ura for their helps and supports.

References

  1. 1.
    Aoyagi, S., Hattori, N., Kohama, A., Komai, S., Suzuki, M., Takano, M., Fukui, E.: Object detection and recognition using template matching with SIFT features assisted by invisible floor marks. J. Robot. Mechatron. 21(6), 689 (2009)CrossRefGoogle Scholar
  2. 2.
    Tomono, M.: 3D object modeling and segmentation using image edge points in cluttered environments. J. Robot. Mechatron. 21(6), 672 (2009)CrossRefGoogle Scholar
  3. 3.
    Brandou, V., Allais, A.G., Perrier, M., Malis, E., Rives, P., Sarrazin, J., Sarradin, P.M.: 3D reconstruction of natural underwater scenes using the stereovision system iris. In: OCEANS 2007-Europe, pp. 1–6. IEEE (2007)Google Scholar
  4. 4.
    Manikandan, G., Sridevi, S., Dhanasekar, J.: Vision based autonomous underwater vehicle for pipeline tracking, International Journal of Innovative Research in Science, Engineering and Technology, vol. 1, pp. 2347–6710 (2015)Google Scholar
  5. 5.
    Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 33(2), 103–122 (2008)CrossRefGoogle Scholar
  6. 6.
    Ghosh, S., Ray, R., Vadali, S.R., Shome, S.N., Nandy, S.: Reliable pose estimation of underwater dock using single camera: a scene invariant approach. Mach. Vis. Appl. 27(2), 221–36 (2016)CrossRefGoogle Scholar
  7. 7.
    Kume, A., Maki, T., Sakamaki, T., Ura, T.: A method for obtaining high-coverage 3D images of rough seafloor using AUV-real-time quality evaluation and path-planning. J. Robot. Mechatron. 25(2), 364–374 (2013)CrossRefGoogle Scholar
  8. 8.
    Guo, J.: Mooring cable tracking using active vision for a biomimetic autonomous underwater vehicle. J. Mar. Sci. Technol. 13(2), 147–15 (2008)CrossRefGoogle Scholar
  9. 9.
    Vallicrosa, G., Bosch, J., Palomeras, N., Ridao, P., Carreras, M., Gracias, N.: Autonomous homing and docking for AUVs using Range-Only Localization and Light Beacons. IFAC-PapersOnLine 49(23), 54–60 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Palomeras Rovira, N., Peñalver, A., Campos Massot, M., Black, PL, Fernández, J.J., Ridao Rodríguez, P., Oliver Codina, G.: i-AUV Docking Panel and Intervention at Sea. Sensors 16(10), 1673 (2016)CrossRefGoogle Scholar
  11. 11.
    Myint, M., Yonemori, K., Lwin, KN., Yanou, A., Minami, M.: Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments, J Intell Robot Syst.  https://doi.org/10.1007/s10846-017-0703-6 (2017)
  12. 12.
    Uddin, M., Abido, M.A., Rahman, M.A.: Nasir Real-Time implementation of a genetic algorithm based fuzzy logic controller for interior permanent magnet synchronous motor drive proceeding of ICECE (2002)Google Scholar
  13. 13.
    Nguyen, V.B., Morris, A.S.: Genetic algorithm tuned fuzzy logic controller for a robot arm with two-link flexibility and two-joint elasticity. J. Intell. Robot. Syst. 49(1), 3–18 (2007)CrossRefGoogle Scholar
  14. 14.
    Park, J.-Y., Jun, B.-H., Lee, P.-M., Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera. IEEE J. Ocean. Eng. 36(1), 48–61 (2009)CrossRefGoogle Scholar
  15. 15.
    Palomeras, N., Ridao, P., Ribas, D., Vallicrosa, G.: Autonomous i-AUV docking for fixed-base manipulation, in Proc. Int. Fed. Autom. Control 47(3), 12160–12165 (2014)Google Scholar
  16. 16.
    Rao, R.V., Savsani, V.J.: Advance Optimization Techniques. Mechanical design optimization using advanced optimization techniques, pp. 5–34. Springer Science & Business Media (2012)Google Scholar
  17. 17.
    Preechakul, C., Kheawhom, S.: Modified genetic algorithm with sampling techniques for chemical engineering optimization. J. Ind. Eng. Chem. 15(1), 110–118 (2009)CrossRefGoogle Scholar
  18. 18.
    Cui, H., Turan, O.: Application of a new multi-agent hybrid co-evolution based particle swarm optimization methodology in ship design. Comput.-Aided Des. 2, 1013–1027 (2010)CrossRefGoogle Scholar
  19. 19.
    Zou, Y., Luo, D.: A modified ant colony algorithm used for multi-robot odor source localization. In: International Conference on Intelligent Computing, pp. 502–509. Springer, Berlin (2008)Google Scholar
  20. 20.
    Rexhepi, A., Maxhuni, A., Dika, A.: Analysis of the impact of parameters values on the Genetic Algorithm for TSP. Int. J. Comput. Sci. Issues 10(1), 158–164 (2013)Google Scholar
  21. 21.
    Boyabatli, O., Sabuncuoglu, I.: Parameter selection in genetic algorithms, Journal of Systemics. Cybern. Inf. 4(2), 78 (2004)Google Scholar
  22. 22.
    Tabassum, M., Mathew, K.: A genetic algorithm analysis towards optimization solutions. Int. J. Digit. Inf. Wirel. Commun. (IJDIWC) 4(1), 124–142 (2014)Google Scholar
  23. 23.
    Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 371–376. IEEE (2013)Google Scholar
  24. 24.
    Lwin, K.N., Yonemori, K., Myint, M., Mukada, N., Minami, M., Yanou, A., Matsuno, T.: Performance analyses and optimization of real-time multi-step GA for visual-servoing based underwater vehicle, Techno-Ocean 2016. IEEE (2016)Google Scholar
  25. 25.
    Yu, F., Minami, M., Song, W., Zhu, J., Yanou, A.: On-line head pose estimation with binocular hand-eye robot based on evolutionary model-based matching. J. Comput. Inf. Technol. 2(1), 43–54 (2012)Google Scholar
  26. 26.
    Minami, M., Agbanhan, J., Asakura, T.: Evolutionary Scene Recognition and Simultaneous Position Orientation Detection. In: Soft Computing in Measurement and Information Acquisition, pp. 178–207. Springer, Berlin (2003)Google Scholar
  27. 27.
    Mehrez, M.W., Mann, G.K., Gosine, R.G.: An optimization based approach for relative localization and relative tracking control in multi-robot systems. J. Intell. Robot. Syst. 85(2), 385–408 (2017)CrossRefGoogle Scholar
  28. 28.
    GiriRajkumar, S.M., Ramkumar, K., Sanjay, S.O.V.: Real time application of ants colony optimization. Int. J. Comput. Appl. 3(8), 0975–8887 (2010)Google Scholar
  29. 29.
    Mousavian, S.H., Koofigar, H.R.: Identification-based robust motion control of an AUV: optimized by particle swarm optimization algorithm. J. Intell. Robot. Syst. 85(2), 331–352 (2017)CrossRefGoogle Scholar
  30. 30.
    Song, W., Fujia, Y., Minami, M.: 3D visual servoing by feedforward evolutionary recognition. J. Adv. Mech. Des. Syst. Manuf. 4(4), 739–755 (2010)CrossRefGoogle Scholar
  31. 31.
    Suzuki, H., Minami, M.: Visual servoing to catch fish using global/local GA search. IEEE/ASME Trans. Mechatron. 10(3), 352–357 (2005)CrossRefGoogle Scholar
  32. 32.
    Myint, M., Yonemori, K., Yanou, A., Minami, M., Ishiyama, S.: Visual-servo-based autonomous docking system for underwater vehicle using dual-eyes camera 3D-pose tracking. In: 2015 IEEE/SICE International Symposium on System Integration(SII), pp. 989–994 (2015)Google Scholar
  33. 33.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual-based deep sea docking simulation of underwater vehicle using dual-eyes cameras with lighting adaptation. In: Proceedings of OCEAN 2016-Shanghai, pp. 1–8 (2016)Google Scholar
  34. 34.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Mukada, N., Minami, M.: Dual-eyes visual-based sea docking for sea Bottom battery recharging. OCEAN (2016)Google Scholar
  35. 35.
    Lwin, K.N., Yonemori, K., Myint, M., Yanou, A., Minami, M.: Autonomous docking experiment in the sea for visual-servo type underwater vehicle using three-dimensional marker and dual-eyes cameras. In: Society of Instrument and Control Engineers of Japan (SICE), 2016 55th Annual Conference, pp. 1359–1365. IEEE (2016)Google Scholar
  36. 36.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking. J. Robot. Mechatron. 28(4), 543–558 (2016)CrossRefGoogle Scholar
  37. 37.
    Myint, M., Yonemori, K., Yanou, A., Ishiyama, S., Minami, M.: Robustness of visual-servo against air bubble disturbance of underwater vehicle system using three-dimensional marker and dual-eye cameras. In: OCEANS 2015-MTS/IEEE, pp. 1–8, Washington (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Khin Nwe Lwin
    • 1
    Email author return OK on get
  • Myo Myint
    • 1
  • Naoki Mukada
    • 1
  • Daiki Yamada
    • 1
  • Takayuki Matsuno
    • 1
  • Kazuhiro Saitou
    • 1
  • Waichiro Godou
    • 1
  • Tatsuya Sakamoto
    • 1
  • Mamoru Minami
    • 1
  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations