Advertisement

Stability Control for Dynamic Walking of Bipedal Robot with Real-time Capture Point Trajectory Optimization

  • In-Seok Kim
  • Young-Joong Han
  • Young-Dae HongEmail author
Article
  • 29 Downloads

Abstract

This paper proposes a stabilization method for dynamic walking of a bipedal robot with real-time optimization of capture point trajectories. We used the capture point trajectories to generate the control input, which is the desired zero moment point (ZMP) with a sliding-mode ZMP controller to follow the desired ZMP. This method enables the robot to implement various dynamic walking commands, such as forward stride, lateral stride, walking direction, single support time, and double support time. We also adopted enhanced dynamics with the three mass linear inverted pendulum model (3M-LIPM). First, the compensated ZMP is calculated by both walking commands and kinematic configuration of the robot in closed form. Then, the walking pattern is obtained by using initial and boundary conditions of the 3M-LIPM, which satisfies the walking commands. The capture point (CP) trajectory is optimized in real time to control the walking stability and a capture point tracking controller is used for tracking the optimized CP trajectory, which generates an optimal control input that is near the center of the support polygon. The performance of the proposed stabilization method was verified by a dynamics simulator, Webots, and comparison with the original capture point controller-based walking algorithm is presented.

Keywords

Three mass inverted pendulum model Walking pattern generation Capture point dynamics-based walking Divergent component of motion Real-time walking optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B1006691).

References

  1. 1.
    Vukobratovic, M., Borovac, B.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Robot. 1 (1), 157–173 (2004)CrossRefGoogle Scholar
  2. 2.
    Kajita, S., Osamu, M., Muneharu, S.: Real-time 3D walking pattern generation for a biped robot with telescopic legs. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 3, pp. 2299–2306 (2001)Google Scholar
  3. 3.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A realtime pattern generator for biped walking. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 1, pp. 31–37 (2002)Google Scholar
  4. 4.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 2, pp. 1620–1626 (2003)Google Scholar
  5. 5.
    Morisawa, M., Kajita, S., Kaneko, K., Harada, K., Kanehiro, F., Fujiwara, K., Hirukawa, H.: Pattern generation of biped walking constrained on parametric surface. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2405–2410 (2005)Google Scholar
  6. 6.
    Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online generation of humanoid walking motion based on fast generation method of motion pattern that follows desired ZMP. In: Proc. IEEE Int. Conf. Intell. Robots Syst., pp. 2684–2689 (2002)Google Scholar
  7. 7.
    Erbatur, K., Kurt, O.: Natural ZMP trajectories for biped robot reference generation. IEEE Trans. Ind. Electron. 56(3), 835–845 (2009)CrossRefGoogle Scholar
  8. 8.
    Hong, Y.-D., Lee, B.-J., Kim, J.-H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 16(4), 783–789 (2011)CrossRefGoogle Scholar
  9. 9.
    Hong, Y.-D., Kim, J.-H.: 3-D command state-based modifiable bipedal walking on uneven terrain. IEEE/ASME Trans. Mechatron. 18(2), 657–663 (2013)CrossRefGoogle Scholar
  10. 10.
    Hong, Y.-D., Lee, B.-J.: Experimental study on modifiable walking pattern generation for handling infeasible navigational commands. J. Elect. Eng. Technol. 10(6), 2368–2375 (2015)CrossRefGoogle Scholar
  11. 11.
    Nishiwaki, K., Kagami, S.: Simultaneous planning of CoM and ZMP based on the preview control method for online walking control. In: Proc.IEEE-RAS Int. Conf. Humanoid Robots, pp. 745–751 (2011)Google Scholar
  12. 12.
    Park, J.H., Kim, K.D.: Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In: Proc. IEEE Int. Conf. Robotics Automation, Leuven, Belgium, pp. 3528–3533 (1998)Google Scholar
  13. 13.
    Sato, T., Sakaino, S., Ohnishi, K.: Real-time walking trajectory generation method with three-mass models at constant body height for three dimensional biped robots. IEEE Trans. Ind. Electron. 58(2), 376–383 (2011)CrossRefGoogle Scholar
  14. 14.
    Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K.: Biped walking stabilization based on linear inverted pendulum tracking. In: Proc. on IEEE Int. Conf. on Intelligent Robots and Systems, pp. 4489–4496 (2010)Google Scholar
  15. 15.
    Campos-Macias, L., et al.: Stabilization method for dynamic gait in bipedal walking robots. In: IEEE Int. Conf. on Humanoid Robots (Humanoids), pp. 1276–1281 (2016)Google Scholar
  16. 16.
    Hu, K., Ott, C., Lee, D.: Learning and generalization of compensative zero-moment point trajectory for biped walking. IEEE Trans. Robot 32(3), 717725 (2016)CrossRefGoogle Scholar
  17. 17.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: A step toward humanoid push recovery. In: Proceedings of the international conference on humanoid robots. IEEE, pp. 200–207 (2006)Google Scholar
  18. 18.
    Hof, A.L.: The extrapolated center of mass concept suggests a simple control of balance in walking. Human Movement Sci. 27, 112–125 (2008)CrossRefGoogle Scholar
  19. 19.
    Englsberger, J., Ott, C., Roa, M.A., Albu-Schäffer, A., Hirzinger, G.: Bipedal walking control based on capture point dynamics. In: IEEE/RSJ int. conference on intelligent robots and systems, pp. 4420–4427 (2011)Google Scholar
  20. 20.
    Englsberger, J., Ott, C.: Integration of vertical com motion and angular momentum in an extended capture point tracking controller for bipedal walking. In: 2012 12th IEEE-RAS international conference on humanoid robots (Humanoids), pp. 183–189 (2012)Google Scholar
  21. 21.
    Morisawa, M., Kajita, S., Kanehiro, F., Kaneko, K., Miura, K., Yokoi, K.: Balance control based on capture point error compensation for biped walking on uneven terrain. In: IEEE-RAS Int. Conf. on Humanoid Robots, pp. 734–740 (2012)Google Scholar
  22. 22.
    Krause, M., Englsberger, J., Wieber, P.-B., Ott, C.: Stabilization of the capture point dynamics for bipedal walking based on model predictive control. IFAC Pro. 45, 22 (2012)CrossRefGoogle Scholar
  23. 23.
    Lanari, L., Hutchinson, S., Marchionni, L.: Boundedness issues in planning of locomotion trajectories for biped robots. In: Proc. of the IEEE/RSJ Int. Conf. on Humanoid Robots, pp. 951–958 (2014)Google Scholar
  24. 24.
    Lanari, L., Hutchinson, S.: Planning desired center of mass and zero moment point trajectories for bipedal locomotion. In: Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots, pp. 637–642 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAjou UniversitySuwonKorea

Personalised recommendations