Advertisement

Head-Eye Coordination of Humanoid Robot with Potential Controller

  • Indika B. WijayasingheEmail author
  • Sumit K. Das
  • Haylie L. Miller
  • Nicoleta L. Bugnariu
  • Dan O. Popa
Article
  • 26 Downloads

Abstract

With the advancements in the field of anthropomorphic robots, the interest in generating human-like motions has grown ever so rapidly. A major role in this regard is played by control algorithms that produce appropriate dynamic responses with the robot hardware. In this paper we utilized a potential controller to obtain human-like head-eye movements of a robotic android head. The orientations of the robotic head and eyes were subjected to the same constraints that govern human head and eye orientations to the extent allowed by the mechanical design. On top of the potential controller, visual feedback was used to improve the precision of visual target acquisition. The controller was tested in two scenarios; acquiring a fixed target and tracking a moving target in the field of view of the robot. Head orientations of the robot were compared to those of a human subject for a target tracking experiment. Results indicate that the controller is capable of performing object tracking tasks while exhibiting realistic human-like head orientations.

Keywords

Head-eye coordination Potential control Humanoid robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work presented in this paper was supported in part by the National Science Foundation (NSF) grant numbers 1208623 and 1643989. We would also like to thank Dr. David Hanson and Hanson Robotics for the help provided with PKD robot in numerous ways.

References

  1. 1.
    Cannata, G., Maggiali, M.: Implementation of listing’s law for a tendon driven robot eye. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3940–3945 (2006).  https://doi.org/10.1109/IROS.2006.281828
  2. 2.
    Ceylan, M., Henriques, D.Y.P., Tweed, D.B., Crawford, J.D.: Task-dependent constraints in motor control: pinhole goggles make the head move like an eye. J. Neurosci. 20(7), 2719–2730 (2000)CrossRefGoogle Scholar
  3. 3.
    Collins, J.D., Markham, A., Service, K., Reini, S., Wolf, E., Sessoms, P.: A systematic literature review of the use and effectiveness of the Computer Assisted Rehabilitation Environment for research and rehabilitation as it relates to the wounded warrior. Work 50, 121–129 (2015).  https://doi.org/10.3233/WOR-141927 CrossRefGoogle Scholar
  4. 4.
    Crawford, J.D., Ceylan, M.Z., Klier, E.M., Guitton, D.: Three dimensional eye-head coordination during gaze saccades in the primate. J. Neurophysiol. 81, 1760–1782 (1999)CrossRefGoogle Scholar
  5. 5.
    Donders, F.C.: Beiträge zur lehre von den bewegungen des menschlichen auges. Holländische Beiträge zu den Anatomischen und Physiologischen Wissenschaften 1, 104–145 (1848, Press, 1996)Google Scholar
  6. 6.
    Emgu CV: Emgu cv main page. http://www.emgu.com/ (2008)
  7. 7.
    Feldman, A.G., Levin, M.F.: The equilibrium-point hypothesis? Past, present and future. Progress in Motor Control, pp. 699–726 (2009)Google Scholar
  8. 8.
    Ghosh, B.K., Wijayasinghe, I.B., Kahagalage, S.D.: A geometric approach to head/eye control. In: IEEE Access vol. 2, pp. 316–332.  https://doi.org/10.1109/ACCESS.2014.2315523 (2014)
  9. 9.
    Glasauer, S., Hoshi, M., Kempermann, U., Eggert, T., Büttner, U.: Three dimensional eye position and slow phase velocity in humans with downbeat nystagmus. J. Neurophysiol. 89, 338–354 (2003)CrossRefGoogle Scholar
  10. 10.
    Hanson, D.: Exploring the aesthetic range for humanoid robots. In: ICCS CogSci, pp. 39–42 (2006)Google Scholar
  11. 11.
    Kato, I., Ohteru, S., Kobayashi, H., Shirai, K., Uchiyama, A.: Information-power machine with senses and limbs (wabot-1). In: First CISM - IFToMM Symposium on Theory and Practice of Robots and Manipulators, vol. 1, pp. 11–24 (1974)Google Scholar
  12. 12.
    Kobayashi, H.: Realization of realistic and rich facial expressions by face robot. In: IEEE IROS, pp. 1123–1128 (2003)Google Scholar
  13. 13.
    Kremmyda, O., Glasauer, S., Guerrasio, L., Büttner, U.: Effects of unilateral midbrain lesions on gaze (eye and head) movements. Ann N Y Acad Sci 1233, 71–77 (2011)CrossRefGoogle Scholar
  14. 14.
    Listing, J.B.: Beiträge zur Physiologischen Optik. Göttinger Studien, Vandenhoeck und Ruprecht, Göttingen (1845)Google Scholar
  15. 15.
    Oh, J., Hanson, D., Kim, W., Han, Y., Kim, J., Park, I.: Design of android type humanoid robot albert hubo. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1428–1433 (2006).  https://doi.org/10.1109/IROS.2006.281935
  16. 16.
    Paletta, L., Neuschmied, H., Schwarz, M., Lodron, G., Pszeida, M., Ladstätter, S, Luley, P. In: Proceedings of the Symposium on Eye Tracking Research and Applications - ETRA ’14, pp 367–368. ACM Press, New York (2014).  https://doi.org/10.1145/2578153.2628813
  17. 17.
    Rajruangrabin, J., Popa, D.O.: Robot head motion control with an emphasis on realism of neck-eye coordination during object tracking. J. Intell. Robot. Syst. 63(2), 163–190.  https://doi.org/10.1007/s10846-010-9468-x (2011)
  18. 18.
    Ranatunga, I., Torres, N.A., Patterson, R., Bugnariu, N., Stevenson, M., Popa, D.: RoDiCA: a human-robot interaction system for treatment of childhood autism spectrum disorders. In: Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’12. ACM, New York (2012)Google Scholar
  19. 19.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent asimo: system overview and integration. In: IEEE IROS, pp 2478–2483, Switzerland (2002)Google Scholar
  20. 20.
    Sharkey, P.M., Murray, D.W., Heuring, J.J.: On the kinematics of robot heads. IEEE Trans. Robot. Autom. 13(3), 437–442 (1997).  https://doi.org/10.1109/70.585904 CrossRefGoogle Scholar
  21. 21.
    Singh, S.K., Pieper, S.D., Popa, D.O., Guinness, J.: Control and coordination of head, eyes and facial expressions of virtual actors in virtual environments. In: Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication, pp 335–339 (1993).  https://doi.org/10.1109/ROMAN.1993.367697
  22. 22.
    Sugano, S., Tanaka, Y., Ohoka, T., Kato, I.: Autonomic limb control of the information processing robot - movement control system of robot musician ‘wabot-2’. J. Robot. Soc. Jpn 3(4), 81–94 (1985)CrossRefGoogle Scholar
  23. 23.
    Tweed, D., Vilis, T.: Geometric relations of eye position and velocity vectors during saccades. Vis. Res. 30, 111–127 (1990)CrossRefGoogle Scholar
  24. 24.
    von Helmholtz, H.: Handbuch der Physiologischen Optik, 3rd edn. 3, 1910. Leopold Voss, Hamburg & Leipzig, Leipzig (1866)Google Scholar
  25. 25.
    Wijayasinghe, I., Aulisa, E., Büttner, U., Ghosh, B.K., Glasauer, S., Kremmyda, O.: Potential and optimal target fixating control of the human head/eye complex. IEEE TCST 23(2), 796–804 (2014a)Google Scholar
  26. 26.
    Wijayasinghe, I., Ruths, J., Büttner, U., Ghosh, B.K., Glasauer, S., Kremmyda, O., Li, J.S.: Potential and optimal control of human head movement using Tait-Bryan parametrization. Automatica 50(2), 519–529 (2014b)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wijayasinghe, I.B., Miller, H.L., Das, S.K., Bugnariu, N.L., Popa, D.O.: Human-like object tracking and gaze estimation with pkd android. In: Proceedings of SPIE 9859, Baltimore (2016),  https://doi.org/10.1117/12.2224382

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Electrical & Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.University of North Texas Health Science CenterFort WorthUSA

Personalised recommendations