Advertisement

Journal of Intelligent & Robotic Systems

, Volume 95, Issue 3–4, pp 1021–1040 | Cite as

A Distributed Algorithm for Exploration of Unknown Environments with Multiple Robots

  • Gabriel Aguilar
  • Luis Bravo
  • Ubaldo RuizEmail author
  • Rafael Murrieta-Cid
  • Edgar Chavez
Article
  • 163 Downloads

Abstract

In this paper, we present a complete algorithm for exploration of unknown environments containing disjoint obstacles with multiple robots. We propose a distributed approach considering several variants. The robots are modeled as points or discs, the obstacles are distinguishable or they are not distinguishable, the point robots only communicate at rendezvous, the disc-shaped robots can communicate if they are visible to each other, finally the free subset of the configuration space has one or several connected components. Two possible applications of our algorithms are: 1) Search of a static object in an unknown environment. 2) Damage verification in unknown environments composed by multiple elements (e.g. buildings). The main contributions of this work are the following: 1) The algorithms guarantee exploring the whole environment in finite time even though the robots are no capable of building an exact map of the environment, they cannot estimate their positions and each robot does not have full information about the part of the environment explored by other robots. 2) The method only requires limited communication between the robots. 3) We combine and extend the velocity obstacle method with our proposed approach to explore the environment using disc-shaped robots that are able to avoid collisions with both moving and static obstacles. 4) We propose an exploration strategy such that even if the configuration space has several connected components this strategy guarantees covering the largest possible portion of the environment with an omnidirectional sensor detecting the visibility regions. 5) The algorithm scales well to hundreds of robots and obstacles. We tested in several simulations the performance of our algorithms using different performance metrics.

Keywords

Multi-robot Exploration Distributed algorithm Collision avoidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

(MP4 14.0 MB)

References

  1. 1.
    Schwartz, J.T., Sharir, M.: On the piano movers’ problem: III. Coordinating the motion of several independent bodies: The special case of circular bodies moving amidst polygonal barriers. Int. J. Robot. Res. 2(3), 46–75 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  3. 3.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 27(4), 696–706 (2011)Google Scholar
  4. 4.
    Laguna, G., Murrieta-Cid, R., Becerra, H.M., Lopez-Padilla, R., LaValle, S.M.: Exploration of an unknown environment with a differential drive disc robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2527–2533 (2014)Google Scholar
  5. 5.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated Multi-Robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)CrossRefGoogle Scholar
  6. 6.
    Howard, A., Matariċ, M., Sukhatme, G.: Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem. In: Distributed Autonomous Robotic Systems, vol. 5, pp. 299–308 (2002)Google Scholar
  7. 7.
    Cortės, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  8. 8.
    Taylor, C.J., Kriegman, D.: Vision-based motion planning and exploration algorithms for mobile robots. IEEE Trans. Robot. Autom. 14(3), 417–426 (1998)CrossRefGoogle Scholar
  9. 9.
    Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: Planning Expected-time Optimal Paths for Searching Known Environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 872–878 (2004)Google Scholar
  10. 10.
    Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-Optimal Navigation in an unknown environment without sensing distances. IEEE Trans. Robot. 23(4), 506–518 (2007)CrossRefGoogle Scholar
  11. 11.
    Park, H., Hutchinson, S.: An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing range. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 358–365 (2016)Google Scholar
  12. 12.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151 (1997)Google Scholar
  13. 13.
    Rekletis, I.M., Dudek, G., Milos, E.E.: Graph-based exploration using multiple robots. In: Distributed Autonomous Robotic Systems, vol. 4, pp. 241–250 (2000)Google Scholar
  14. 14.
    Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using a segmentation of the environment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1160–1165 (2008)Google Scholar
  15. 15.
    Matignon, L., Laurent, J., Abdel-Illan, M.: Distributed value functions for multi-robot exploration. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1544–1550 (2012)Google Scholar
  16. 16.
    Amigoni, F.: Experimental evaluation of some exploration strategies for mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2818–2823 (2008)Google Scholar
  17. 17.
    Lee, S.K., Fekete, S., McLurkin, J.: Structured triangulation in multi-robot systems Coverage, patrolling, Voronoi partitions, and geodesic centers. Int. J. Robot. Res. 35(10), 1234–1260 (2016)CrossRefGoogle Scholar
  18. 18.
    Ng, J: Thomas bräunl. Performance Comparison of Bug Navigation Algorithms. J. Intell. Robot. Syst. 50, 73—84 (2007)CrossRefGoogle Scholar
  19. 19.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar
  20. 20.
    Kluge, B.: Recursive agent modeling with probabilistic velocity obstacles for mobile robot navigation among humans. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 376–380 (2003)Google Scholar
  21. 21.
    van den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-Body Collision Avoidance. Robotics Research. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Springer Tracts in Advanced Robotics, vol. 70, pp 3–19. Springer (2011)Google Scholar
  22. 22.
    Bravo, L., Ruiz, U., Murrieta-Cid, R., Aguilar, L., Chavez, E.: A distributed exploration algorithm for unknown environments with multiple obstacles by multiple robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4460–4466 (2017)Google Scholar
  23. 23.
    Cormen, T.H., Leiserson, C., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  24. 24.
    Kleiner, A., Prediger, J., Nebel, B.: RFID Technology-based exploration and SLAM for search and rescue. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4054—4059 (2006)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centro de Investigación en Matemáticas (CIMAT)GuanajuatoMexico
  2. 2.CONACYT Research FellowCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Baja CaliforniaMéxico
  3. 3.Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Baja CaliforniaMéxico

Personalised recommendations