Advertisement

A New Contact Angle Detection Method for Dynamics Estimation of a UGV Subject to Slipping in Rough-Terrain

  • Saeed EbrahimiEmail author
  • Arman Mardani
Article
  • 43 Downloads

Abstract

In this paper, a new single-output resistive sensor is proposed to enhance the dynamics estimation, slip elimination, stability extraction and surface scanning of a ground UGV (wheeled-robot) in 2D and 3D spaces. The new sensor is based on the total resistance of a circuit which contains a continuous resistive belt with high accuracy. The Lagrange method is implemented to derive the stick-slip dynamics in both 2D and 3D spaces. Furthermore, the kinematics is solved using the Newton-Raphson approach. The slipping characteristics of the robot with and without the new sensor are firstly shown in 2D space. To demonstrate the abilities of the sensor in the real applications, the dynamic simulation is further extended to 3D space. A real time torque optimization aided by the new sensor is applied to the dynamics of the robot to eliminate slip during locomotion. Moreover, a stability measure is introduced and the real time stability margins are extracted during missions. The sensor empowers the robot to scan the surface and consequently, extract the main properties of the surface. The simulation results obtained for different case studies prove the ability of the new sensor in performing the above mentioned tasks.

Keywords

Field robots Torque optimization Resistive belt sensor Real time stability Surface scanning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Bogue, R.: Robots to aid the disabled and the elderly. Ind. Robot: Int. J. 40, 519–524 (2013)CrossRefGoogle Scholar
  2. 2.
    Bogue, R.: Robots for space exploration. Ind. Robot: Int. J. 39, 323–328 (2012)CrossRefGoogle Scholar
  3. 3.
    Weisbin, C. R., Lavery, D., Rodriguez, G.: Robots In space into the 21st century. Ind. Robot: Int. J. 24, 169–181 (1997)CrossRefGoogle Scholar
  4. 4.
    Mardani, A., Ebrahimi, S.: A Novel multimode mobile robot with adaptable wheel geometry for maneuverability improvement. Int. J. Robot. 4, 1–15 (2016)Google Scholar
  5. 5.
    Ebrahimi, S., Mardani, A.: Dynamic Modeling And Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing. Int. J. Robot. Theory Appl. 4, 22–34 (2015)Google Scholar
  6. 6.
    Dogramadzi, S., Giannaccini, M. E., Harper, C., Sobhani, M., Woodman, R., Choung, J.: Environmental Hazard analysis-a variant of preliminary hazard analysis for autonomous mobile robots. J. Intell. Robot. Syst. 76(1), 73–117 (2014)CrossRefGoogle Scholar
  7. 7.
    Wu, C. J., Tsai, C. C.: Localization Of an autonomous mobile robot based on ultrasonic sensory information. J. Intell. Robot. Syst. 30(3), 267–277 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Xu, H., Liu, X., Fu, H., Putra, B. B., He, L.: Visual Contact angle estimation and traction control for mobile robot in rough-terrain. J. Intell. Robot. Syst. 74(3-4), 985 (2014)CrossRefGoogle Scholar
  9. 9.
    Cervantes-Sánchez, J.J., Rico-martínez, J. M., Pé, rez-Muñoz, V. H., Orozco-Muñiz, J. D.: A closed-form solution to the forward displacement analysis of a Schönflies parallel manipulator. J. Braz. Soc. Mech. Sci. Eng. 39, 553–563 (2017)Google Scholar
  10. 10.
    Nagatani, K., Ikeda, A., Sato, K., Yoshida, K.: Accurate Estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel. In: IEEE/RSJ International Conference Intelligent Robots and Systems, 2009. IROS 2009, pp. 2373–2378 (2009)Google Scholar
  11. 11.
    Mardani, A., Ebrahimi, S.: Simultaneous Surface scanning and stability analysis of wheeled mobile robots using a new spatial sensitive shield sensor. Robot. Auton. Syst. 98, 1–14 (2017)CrossRefGoogle Scholar
  12. 12.
    Zadarnowska, K., Ratajczak, A.: Task-Priority motion planning of wheeled mobile robots subject to slipping. Robot Motion and Control 422, 75–85 (2012)MathSciNetGoogle Scholar
  13. 13.
    Zielinska, T., Chmielniak, A.: Synthesis Of control law considering wheel–ground interaction and contact stability of autonomous mobile robot. Robotica 29, 981–990 (2011)CrossRefGoogle Scholar
  14. 14.
    Conceicao, A. G., Correia, M. D., Martinez, L.: Modeling And friction estimation for wheeled omnidirectional mobile robots. Robotica 34, 2140–2150 (2016)CrossRefGoogle Scholar
  15. 15.
    Siravuru, A., Shah, S. V., Krishna, K. M.: An optimal wheel-torque control on a compliant modular robot for wheel-slip minimization. Robotica 35, 463–82 (2017)CrossRefGoogle Scholar
  16. 16.
    Lamon, P., Siegwart, R.: Wheel Torque Control in Rough Terrain - Modeling and Simulation. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 18–22. Barcelona (2005)Google Scholar
  17. 17.
    Gracia, L., Tornero, J.: Kinematic modeling of wheeled mobile robots with slip. Adv Robot 21, 1253–1279 (2007)CrossRefGoogle Scholar
  18. 18.
    Li, Y. P., Ang, M. H., Lin, W.: Slip Modelling, Detection and Control for Redundantly Actuated Wheeled Mobile Robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 967-972. Xi’an (2008)Google Scholar
  19. 19.
    Tharakeshwar, A., Ghosal, A.: A Three-wheeled mobile robot for traversing uneven terrain without slip: simulation and experiments. Mech. Based Des. Struct. Mach. 41, 60–78 (2013)CrossRefGoogle Scholar
  20. 20.
    Sidek, N., Sarkar, N.: Exploiting wheel slips of mobile robots to improve navigation performance. Adv. Robot. 27, 627–639 (2013)CrossRefGoogle Scholar
  21. 21.
    Mohammadpour, E., Naraghi, M.: Robust adaptive stabilization of skid steer wheeled mobile robots considering slipping effects. Adv. Robot. 205-227, 25 (2011)Google Scholar
  22. 22.
    Sidharthan, R. K., Kannan, R., Srinivasan, S., Balas, V. E.: Stochastic wheel-slip compensation based robot localization and mapping. Adv. Electr. Comput. Eng. 16, 25–32 (2016)CrossRefGoogle Scholar
  23. 23.
    Bayar, G, Bergerman, M., Koku, A. B.: Improving the trajectory tracking performance of autonomous orchard vehicles using wheel slip compensation. Biosyst. Eng. 146, 149–164 (2016)CrossRefGoogle Scholar
  24. 24.
    Fondahl, K., Kuehn, D., Beinersdorf, F., Bernhard, F., Grimminger, F., Schilling, M., Kirchner, F.: An Adaptive Sensor Foot for a Bipedal and Quadrupedal Robot. In: Biomedical Robotics and Biomechatronics (Biorob), IEEE RAS & EMBS International Conference, pp. 270–275 (2012)Google Scholar
  25. 25.
    Natalie, G., Dolores, B.: Nasa’s opportunity rover rolls free on mars (2006)Google Scholar
  26. 26.
    Nagatani, K., Ikeda, A., Sato, K., Yoshida, K.: Accurate Estimation of Drawbar Pull of Wheeled Mobile Robots Traversing Sandy Terrain Using Built-In Force Sensor Array Wheel. In: Intelligent Robots and Systems, IROS 2009. IEEE/RSJ International Conference, pp. 2373–2378 (2009)Google Scholar
  27. 27.
    Shirai, T., Ishigami, G.: Development Of in-wheel sensor system for accurate measurement of wheel terrain interaction characteristics. J. Terrramech. 51-61, 62 (2015)Google Scholar
  28. 28.
    Masehian, E., Katebi, Y.: Sensor-Based motion planning of wheeled mobile robots in unknown dynamic environments. J. Intell. Robot. Syst. 74(3-4), 893 (2014)CrossRefGoogle Scholar
  29. 29.
    Núñez, P., Vazquez-Martin, R., Bandera, A., Sandoval, F.: Fast Laser scan matching approach based on adaptive curvature estimation for mobile robots. Robotica 27, 469–479 (2009)CrossRefGoogle Scholar
  30. 30.
    Tungadi, F., Kleeman, L.: Autonomous Loop exploration and SLAM with fusion of advanced sonar and laser polar scan matching. Robotica 30, 91–105 (2012)CrossRefGoogle Scholar
  31. 31.
    Lauber, A., Sandell, B., Holmbom, P., Pedersen, O.: Tactile Sensors for industrial robots, vol. 8 (1988)Google Scholar
  32. 32.
    Kinoshita, G. I.: Representation and tactile sensing of 3-D objects by a gripper finger. Robotica 1, 217–222 (1983)CrossRefGoogle Scholar
  33. 33.
    Frigola, M., Casals, A., Amat, J.: Human-Robot Interaction Based on a Sensitive Bumper Skin. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference, pp. 283–287 (2006)Google Scholar
  34. 34.
    Iwata, H., Sugano, S.: Human-Robot-Contact-State Identification Based on Tactile Recognition. In: IEEE Transactions on Industrial Electronics, vol. 52, pp. 1468–1477 (2005)Google Scholar
  35. 35.
    Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., Nakatsu, R.: Robovie: An interactive humanoid robot. Ind. Robot: Int. J. 28(6), 498–504 (2001)CrossRefGoogle Scholar
  36. 36.
    Pan, Z., Zhu, Z.: Flexible Full-body tactile sensor of low cost and minimal output connections for service robot. Ind. Robot: Int. J. 32, 485–491 (2005)CrossRefGoogle Scholar
  37. 37.
    Lowe, M., King, A., Lovett, E., Papakostas, T.: Flexible Tactile sensor technology: bringing haptics to life. Sensor Rev. 24, 33–36 (2004)CrossRefGoogle Scholar
  38. 38.
    Chen, H.: Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation[J]. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)CrossRefGoogle Scholar
  39. 39.
    Chen, H, Ding, S, Chen, X, et al.: Global finite-time stabilization for nonholonomic mobile robots based on visual servoing[J]. Int. J. Adv. Robot. Syst. 11(11), 180 (2014)CrossRefGoogle Scholar
  40. 40.
    Chen, H, Zhang, B, Zhao, T, et al.: Finite-time tracking control for extended nonholonomic chained-form systems with parametric uncertainty and external disturbance[J]. J. Vib. Control. 24(1), 100–109 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xiong, H., Xiong, H., Chen, Y., Chen, Y., Li, X., Li, X., Zhang, J.: A Scan matching simultaneous localization and mapping algorithm based on particle filter. Ind. Robot: Int. J. 43, 607–616 (2016)CrossRefGoogle Scholar
  42. 42.
    Ebrahimi, S., Eberhard, P.: Contact Of Planar Flexible Multibody Systems Using a Linear Complementarity Formulation. PAMM 5(1), 197–198 (2005)CrossRefzbMATHGoogle Scholar
  43. 43.
    Tayefi, M., Geng, Z.: Self-Balancing controlled Lagrangian and geometric control of unmanned mobile robots. Journal of Intelligent &, Robotic Systems 90, 1–13 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYazd UniversityYazdIran

Personalised recommendations