Tracking Error Learning Control for Precise Mobile Robot Path Tracking in Outdoor Environment

  • Erkan KayacanEmail author
  • Girish Chowdhary


This paper presents a Tracking-Error Learning Control (TELC) algorithm for precise mobile robot path tracking in off-road terrain. In traditional tracking error-based control approaches, feedback and feedforward controllers are designed based on the nominal model which cannot capture the uncertainties, disturbances and changing working conditions so that they cannot ensure precise path tracking performance in the outdoor environment. In TELC algorithm, the feedforward control actions are updated by using the tracking error dynamics and the plant-model mismatch problem is thus discarded. Therefore, the feedforward controller gradually eliminates the feedback controller from the control of the system once the mobile robot has been on-track. In addition to the proof of the stability, it is proven that the cost functions do not have local minima so that the coefficients in TELC algorithm guarantee that the global minimum is reached. The experimental results show that the TELC algorithm results in better path tracking performance than the traditional tracking error-based control method. The mobile robot controlled by TELC algorithm can track a target path precisely with less than 10 cm error in off-road terrain.


Learning control Mobile robot Path tracking Tracking error 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Amer, N.H., Zamzuri, H., Hudha, K., Kadir, Z.A.: Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges. J. Intell. Robot. Syst. 86(2), 225–254 (2017). CrossRefGoogle Scholar
  2. 2.
    Blazic, S.: A novel trajectory-tracking control law for wheeled mobile robots. Robot. Auton. Syst. 59(11), 1001–1007 (2011)CrossRefGoogle Scholar
  3. 3.
    Cui, M., Liu, H., Liu, W., Qin, Y.: An adaptive unscented kalman filter-based controller for simultaneous obstacle avoidance and tracking of wheeled mobile robots with unknown slipping parameters. Journal of Intelligent & Robotic Systems. (2017)
  4. 4.
    Goodarzi, F.A., Lee, T.: Global formulation of an extended kalman filter on se(3) for geometric control of a quadrotor uav. J. Intell. Robot. Syst. 88(2), 395–413 (2017). CrossRefGoogle Scholar
  5. 5.
    Huynh, H.N., Verlinden, O., Vande Wouwer, A.: Comparative application of model predictive control strategies to a wheeled mobile robot. J. Intell. Robot. Syst. 87(1), 81–95 (2017)CrossRefGoogle Scholar
  6. 6.
    Kanjanawanishkul, K., Zell, A.: Path following for an omnidirectional mobile robot based on model predictive control. In: 2009 IEEE International Conference on Robotics and Automation, pp 3341–3346 (2009)Google Scholar
  7. 7.
    Kayacan, E., Kayacan, E., Chen, I.M., Ramon, H., Saeys, W.: On the comparison of model-based and model-free controllers in guidance, navigation and control of agricultural vehicles, pp 49–73. Springer International Publishing, Cham (2018)Google Scholar
  8. 8.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Modeling and identification of the yaw dynamics of an autonomous tractor. In: 2013 9Th Asian Control Conference (ASCC), pp 1–6 (2013).
  9. 9.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Distributed nonlinear model predictive control of an autonomous tractor–trailer system. Mechatronics 24(8), 926–933 (2014)CrossRefGoogle Scholar
  10. 10.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Nonlinear modeling and identification of an autonomous tractor–trailer system. Comput. Electron. Agric. 106, 1–10 (2014)CrossRefGoogle Scholar
  11. 11.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Learning in centralized nonlinear model predictive control: application to an autonomous tractor-trailer system. IEEE Trans. Control Syst. Technol. 23(1), 197–205 (2015)CrossRefGoogle Scholar
  12. 12.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Robust tube-based decentralized nonlinear model predictive control of an autonomous tractor-trailer system. IIEEE/ASME Trans. Mechatron. 20(1), 447–456 (2015)CrossRefGoogle Scholar
  13. 13.
    Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Towards agrobots: identification of the yaw dynamics and trajectory tracking of an autonomous tractor. Comput. Electron. Agric. 115, 78–87 (2015)CrossRefGoogle Scholar
  14. 14.
    Kayacan, E., Ramon, H., Saeys, W.: Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Trans. Mechatron. 21(2), 806–814 (2016)CrossRefGoogle Scholar
  15. 15.
    Kayacan, E., Zhang, Z., Chowdhary, G.: Embedded high precision control and corn stand counting algorithms for an ultra-compact 3d printed field robot. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania. (2018)
  16. 16.
    Klancar, G., Skrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)CrossRefGoogle Scholar
  17. 17.
    Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehiclev autonomous guidance. International Journal of Agricultural & Biological Engineering 2(3), 1–16 (2009)Google Scholar
  18. 18.
    Liao, Y., Ou, Y., Meng, S.: Wheeled mobile robot based on adaptive linear quadratic gaussian control. In: 2017 29Th Chinese Control and Decision Conference (CCDC), pp 5768–5775 (2017).
  19. 19.
    Lins Barreto, J.C., Scolari Conceicao, A.G., Dorea, C.E.T., Martinez, L., De Pieri, E.R.: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Trans. Mechatron. 19(2), 467– 476 (2014)CrossRefGoogle Scholar
  20. 20.
    Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control. Eng. Pract. 16(11), 1354–1363 (2008)CrossRefGoogle Scholar
  21. 21.
    Normey-Rico, J.E., Alcal, I., Gmez-Ortega, J., Camacho, E.F.: Mobile robot path tracking using a robust pid controller. Control. Eng. Pract. 9(11), 1209–1214 (2001)CrossRefGoogle Scholar
  22. 22.
    Pan, Y., Cheng, C.A., Saigol, K., Lee, K., Yan, X., Theodorou, E., Boots, B.: Agile autonomous driving using end-to-end deep imitation learning. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania. (2018)
  23. 23.
    Seder, M., Baotić, M., Petrović, I.: Receding horizon control for convergent navigation of a differential drive mobile robot. IEEE Trans. Control Syst. Technol. 25(2), 653–660 (2017). CrossRefGoogle Scholar
  24. 24.
    Skrjanc, I., Klancar, G.: A comparison of continuous and discrete tracking-error model-based predictive control for mobile robots. Robot. Auton. Syst. 87, 177–187 (2017)CrossRefGoogle Scholar
  25. 25.
    Sun, N., Fang, Y., Chen, H., Lu, B.: Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans. Ind. Electron. 64(3), 2135–2146 (2017)CrossRefGoogle Scholar
  26. 26.
    Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L., Wang, T.: Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Trans. Ind. Electron. 64(1), 505–516 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Senseable City Laboratory and Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Coordinated Science Laboratory and Distributed Autonomous Systems LaboratoryUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations