Advertisement

Combined Optimal Control and Combinatorial Optimization for Searching and Tracking Using an Unmanned Aerial Vehicle

  • Anders Albert
  • Lars Imsland
Article
  • 31 Downloads

Abstract

Combined searching and tracking of objects using Unmanned Aerial Vehicles (UAVs) is an important task with many applications. One way to approach this task is to formulate path-planning as a continuous optimal control problem. However, such formulations will, in general, be complex and difficult to solve with global optimality. Therefore, we propose a two-layer framework, in which the first layer uses a Traveling-Salesman-type formulation implemented using combinatorial optimization to find a near-globally-optimal path. This path is refined in the second layer using a continuous optimal control formulation that takes UAV dynamics and constraints into consideration. Searching and tracking problems usually trade-off, often in a manual or ad-hoc manner, between searching unexplored areas and keeping track of already known objects. Instead, we derive a result that enables prioritization between searching and tracking based on the probability of finding a new object weighted against the probability of losing tracked objects. Based on this result, we construct a new algorithm for searching and tracking. This algorithm is validated in simulation, where it is compared to multiple base cases as well as a case utilizing perfect knowledge of the positions of the objects. The simulations demonstrate that the algorithm performs significantly better than the base cases, with an improvement of approximately 5-15%, while it is approximately 20-25% worse than the perfect case.

Keywords

UAV Motion planning Mathematical optimization Combinatorial optimization Path planning Target tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Eik, K.: Review of experiences within ice and iceberg management. J. Navig. 61(4), 557–572 (2008)CrossRefGoogle Scholar
  2. 2.
    Lešinskis, I., Pavlovičs, A.: The aspects of implementation of unmanned aerial vehicles for ice situation awareness in maritime traffic. Transport Means - Proceedings of the International Conference, pp. 65–68 (2011)Google Scholar
  3. 3.
    Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robotics & Automation Magazine 19(3), 46–56 (2012)CrossRefGoogle Scholar
  4. 4.
    Goodrich, M.A., Morse, B.S., Gerhardt, D., Cooper, J.L., Quigley, M., Adams, J.A., Humphrey, C.: Supporting wilderness search and rescue using a camera-equipped mini uav. Journal of Field Robotics 25(1-2), 89–110 (2008)CrossRefGoogle Scholar
  5. 5.
    Glade, D.: Unmanned Aerial Vehicles: Implications for military operations, DTIC Document, Tech. Rep. (2000)Google Scholar
  6. 6.
    Eggers, J., Draper, M.H.: Multi-UAV control for tactical reconnaissance and close air support missions: operator perspectives and design challenges. In: Proceedings NATO RTO Human Factors and Medicine Symp. HFM-135. NATO TRO, Neuilly-sur-Siene. CEDEX, Biarritz (2006)Google Scholar
  7. 7.
    DeSena, J.T., Martin, S.R., Clarke, J.C., Dutrow, D.A., Kohan, B.C., Kadar, I.: Decentralized closed-loop collaborative surveillance and tracking performance sensitivity to communications connectivity. In: Proceedings of SPIE Vol, vol. 8745, pp. 874507–1 (2013)Google Scholar
  8. 8.
    Girard, A.R., Howell, A.S., Hedrick, J.K.: Border patrol and surveillance missions using multiple unmanned air vehicles. In: 43rd IEEE Conference on decision and control, 2004. CDC. vol. 1. IEEE, pp. 620–625 (2004)Google Scholar
  9. 9.
    Isenor, A.W., Allardb, Y., Lapinskia, A.-L.S., Demersb, H., Radulescub, D.: Coordinating UAV information for executing national security-oriented collaboration, vol. 9248 (2014)Google Scholar
  10. 10.
    Schrijver, A.: On the history of combinatorial optimization (till 1960). Handbooks in Operations Research and Management Science 12, 1–68 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)MathSciNetGoogle Scholar
  12. 12.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The traveling salesman problem: A computational study (2011)Google Scholar
  13. 13.
    Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gutin, G., Punnen, A.P.: The traveling salesman problem and its variations (2006)Google Scholar
  15. 15.
    Pesch, H.J., Plail, M., Munich, D.: The maximum principle of optimal control: a history of ingenious ideas and missed opportunities. Control and Cybernetics 38(4A), 973–995 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Betts, J.T.: Practical methods for optimal control and estimation using nonlinear programming. SIAM (2010)Google Scholar
  17. 17.
    Biegler, L.T.: Nonlinear programming: concepts, algorithms and applications to chemical processes. SIAM (2010)Google Scholar
  18. 18.
    Stone, L.D.: Or forum—what’s happened in search theory since the 1975 Lanchester prize? Oper. Res. 37(3), 501–506 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koopman, B.O.: The theory of search. i. kinematic bases. Oper. Res. 4(3), 324–346 (1956)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Koopman, B.O.: The theory of search. ii. target detection. Oper. Res. 4(5), 503–531 (1956)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Koopman, B.O.: The theory of search: Iii. the optimum distribution of searching effort. Oper. Res. 5(5), 613–626 (1957)CrossRefGoogle Scholar
  22. 22.
    Walton, C.L., Gong, Q., Kaminer, I., Royset, J.O.: Optimal motion planning for searching for uncertain targets. IFAC Proceedings Volumes 47(3), 8977–8982 (2014)CrossRefGoogle Scholar
  23. 23.
    Stone, L.D., Royset, J.O., Washburn, A.R.: Optimal search for moving targets. Springer (2016)Google Scholar
  24. 24.
    Golden, B.L., Raghavan, S., Wasil, E.A.: The vehicle routing problem: latest advances and new challenges. Springer Science & Business Media (2008)Google Scholar
  25. 25.
    Oberlin, P., Rathinam, S., Darbha, S.: Today’s traveling salesman problem. IEEE Robotics & Automation Magazine 17(4), 70–77 (2010)CrossRefGoogle Scholar
  26. 26.
    Smith, S.L.: Task allocation and vehicle routing in dynamic environments. University of California Santa Barbara (2009)Google Scholar
  27. 27.
    Yao, M., Zhao, M.: Unmanned aerial vehicle dynamic path planning in an uncertain environment. Robotica 33(3), 611–621 (2015)CrossRefGoogle Scholar
  28. 28.
    Meng, W., He, Z., Su, R., Yadav, P.K., Teo, R., Xie, L.: Decentralized multi-UAV flight autonomy for moving convoys search and track. IEEE Trans. Control Syst. Technol. 25(4), 1480–1487 (2017)CrossRefGoogle Scholar
  29. 29.
    Zhao, C., Zhu, M., Liang, H., Wu, Z.: The sustainable tracking strategy of moving target by UAV in an uncertain environment, Control Conference (CCC), 2016 35th Chinese, pp. 5641–5647 (2016)Google Scholar
  30. 30.
    Furukawa, T., Bourgault, F., Lavis, B., Durrant-Whyte, H.F.: Recursive Bayesian search-and-tracking using coordinated UAVs for lost targets. IEEE International Conference on Robotics and Automation (ICRA), pp. 2521–2526 (2006)Google Scholar
  31. 31.
    Tian, X., Bar-Shalom, Y., Pattipati, K.R.: Multi-step look-ahead policy for autonomous cooperative surveillance by UAVs in hostile environments. In: 47th IEEE Conference on decision and control, 2008. CDC 2008, pp. 2438–2443 (2008)Google Scholar
  32. 32.
    Kassas, Z.M., Arapostathis, A., Humphreys, T.E.: Greedy motion planning for simultaneous signal landscape mapping and receiver localization. IEEE Journal of Selected Topics in Signal Processing 9(2), 247–258 (2015)CrossRefGoogle Scholar
  33. 33.
    Peterson, C.K., Newman, A.J., Spall, J.C.: Simulation-based examination of the limits of performance for decentralized multi-agent surveillance and tracking of undersea targets, SPIE Defense+ Security, pp. 90910F–90910F (2014)Google Scholar
  34. 34.
    Pitre, R.R., Li, X.R., Delbalzo, R.: UAV Route planning for joint search and track missions—an information-value approach. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2551–2565 (2012)CrossRefGoogle Scholar
  35. 35.
    Sinha, A., Kirubarajan, T., Bar-Shalom, Y.: Autonomous ground target tracking by multiple cooperative UAVs. In: 2005 IEEE Aerospace Conference, pp. 1–9 (2005)Google Scholar
  36. 36.
    Sinha, A.: Autonomous surveillance by multiple cooperative UAVs. In: Proceedings of SPIE Vol, vol. 5913, pp. 59131V–1 (2005)Google Scholar
  37. 37.
    Mavrommati, A., Tzorakoleftherakis, E., Abraham, I., Murphey, T.D.: Real-time area coverage and target localization using receding-horizon ergodic exploration, arXiv:1708.08416 (2017)
  38. 38.
    Oispuu, M., Sciotti, M., Charlish, A.: Air route selection for improved air-to-ground situation assessment. SPIE Defense, Security, and Sensing, pp. 87420M–87420M (2013)Google Scholar
  39. 39.
    Vanegas Alvarez, F.: Uncertainty based online planning for UAV missions in GPS-denied and cluttered environments, Ph.D. dissertation Queensland University of Technology (2017)Google Scholar
  40. 40.
    Tichavsky, P., Muravchik, C.H., Nehorai, A.: Posterior cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process. 46(5), 1386–1396 (1998)CrossRefGoogle Scholar
  41. 41.
    Hernandez, M.: Performance bounds for target tracking: computationally efficient formulations and associated applications. Integrated Tracking, Classification, and Sensor Management: Theory and Applications, pp. 255–310 (2012)Google Scholar
  42. 42.
    Esmailifar, S.M., Saghafi, F.: Cooperative localization of marine targets by UAVs. Mech. Syst. Signal Process. 87, 23–42 (2017)CrossRefGoogle Scholar
  43. 43.
    Koohifar, F., Kumbhar, A., Guvenc, I.: Receding horizon multi-UAV cooperative tracking of moving rf source. IEEE Commun. Lett. 21(6), 1433–1436 (2017)CrossRefGoogle Scholar
  44. 44.
    Albert, A., Imsland, L.: Performance bounds for tracking multiple objects using a single UAV, pp. 1539–1546 (2017)Google Scholar
  45. 45.
    Gelb, A.: Applied optimal estimation. MIT press (1974)Google Scholar
  46. 46.
    Leira, F., Johansen, T.A., Fossen, T.I.: Automatic detection classification and tracking of objects in the ocean surface from uavs using a thermal camera (2015)Google Scholar
  47. 47.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Irving, R.S.: Integers, polynomials and rings: A course in algebra. Springer Science & Business Media (2003)Google Scholar
  49. 49.
    Chen, D.-S., Batson, R.G., Dang, Y.: Applied integer programming: Modeling and solution. Wiley (2010)Google Scholar
  50. 50.
    Dormand, J.R., Prince, P.J.: A family of embedded runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Löfberg, J.: YALMIP: A Toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)Google Scholar
  52. 52.
    IBM Ilog CPLEX optimization studio CPLEX user’s manual, http://www.ibm.com, 2015, accessed: 2015-09-12
  53. 53.
    Shampine, L.F., Reichelt, M.W.: The matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Andersson, J.: A General-Purpose Software Framework for Dynamic Optimization, PhD Thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium (2013)Google Scholar
  55. 55.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Punyawee, A., Panumate, C., Iida, H.: Finding comfortable settings of snake game using game refinement measurement. In: International Conference on Computer Science and its Applications, pp. 66–73 (2016)Google Scholar
  57. 57.
    Fossen, T.I.: Handbook of marine craft hydrodynamics and motion control. Wiley (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Engineering Cybernetics Norwegian University of Science TechnologyTrondheimNorway

Personalised recommendations