Advertisement

Guidance-Control System of a Quadrotor for Optimal Coverage in Cluttered Environment with a Limited Onboard Energy: Complete Software

  • Y. Bouzid
  • Y. Bestaoui
  • H. Siguerdidjane
Article

Abstract

In this paper, a Guidance-Control System (GCS) for optimal coverage planning, using a quadrotor, in damaged area is considered. The quadrotor is assumed to visit a set of reachable points, defined manually by the user or automatically generated, following the shortest path while avoiding the no-fly zones. The problem is solved by using a two-stage proposed algorithm. In the first stage, a novel tool for cluttered environments based on optimal Rapidly-exploring Random Trees (RRT) approach, called Multi-RRT* Fixed Node (RRT*FN), is developed to define the shortest paths from each point to its neighbors. By means of the pair-wise costs between points provided by the first-stage algorithm, in the second stage, the overall shortest path is obtained by solving a Traveling Salesman Problem (TSP) using Genetic Algorithms (GA). Taking into consideration the limited onboard energy, multi-rounds for the coverage planning are assumed as an alternative by adapting our problem as a Vehicle Routing Problem (VRP). This latter is solved using the savings heuristic approach. The guidance module is supported by an efficient controller that minimizes the consumed energy and allows a damped response (i.e. without overshoot). It is a reference model based control strategy called Interconnection Damping Assignment-Passivity Based Control (IDA-PBC). The effectiveness of the overall system is demonstrated via numerical simulations and confirmed experimentally with very promising results.

Keywords

Coverage planning Quadrotor UAV 3D trajectory tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Robot. Res. 21(4), 331–344 (2002).  https://doi.org/10.1177/027836402320556359 CrossRefGoogle Scholar
  2. 2.
    Wang, X., Syrmos, V.L.: Coverage path planning for multiple robotic agent-based inspection of an unknown 2d environment. In: 2009 17th Mediterranean conference on control and automation, pp 1295–1300 (2009).  https://doi.org/10.1109/MED.2009.5164725
  3. 3.
    Yakoubi, M.A., Laskri, M.T.: The path planning of cleaner robot for coverage region using Genetic Algorithms. Journal of innovation in digital ecosystems 3(1), 37–43 (2016).  https://doi.org/10.1016/j.jides.2016.05.004 CrossRefGoogle Scholar
  4. 4.
    Choi, Y.H., Lee, T.K., Baek, S.H., Oh, S.Y.: Online complete coverage path planning for mobile robots based on linked spiral paths using constrained inverse distance transform. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5788–5793 (2009).  https://doi.org/10.1109/IROS.2009.5354499
  5. 5.
    Choset, H.: Coverage for robotics – A survey of recent results. Ann. Math. Artif. Intell. 31(1-4), 113–126 (2001).  https://doi.org/10.1023/A:1016639210559 CrossRefzbMATHGoogle Scholar
  6. 6.
    Goerzen, C., Kong, Z., Mettler, B.: A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance. J. Intell. Robot. Syst. 57(1-4), 65 (2010).  https://doi.org/10.1007/s10846-009-9383-1 CrossRefzbMATHGoogle Scholar
  7. 7.
    Choset, H.M.: Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press (2005)Google Scholar
  8. 8.
    Shivashankar, Jain, R., Kuter, U., Nau, D.: Real-Time Planning for Covering an Initially-Unknown Spatial Environment (2011)Google Scholar
  9. 9.
    An, V., Qu, Z.: Triangulation-based path planning for patrolling by a mobile robot. In: 2013 Australian Control Conference, pp 183–188 (2013).  https://doi.org/10.1109/AUCC.2013.6697270
  10. 10.
    Guo, Y., Qu, Z.: Coverage control for a mobile robot patrolling a dynamic and uncertain environment. In: 5th World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), vol. 6, pp 4899–4903 (2004).  https://doi.org/10.1109/WCICA.2004.1343643
  11. 11.
    Zelinsky, A., Jarvis, R.A., Byrne, J.C., Yuta, S.: Planning paths of complete coverage of an unstructured environment by a mobile robot. In: Proceedings of International Conference on Advanced Robotics, pp 533–538 (1993)Google Scholar
  12. 12.
    Gabriely, Y., Rimon, E.: Spiral-STC: an on-line coverage algorithm of grid environments by a mobile robot. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, pp 954–960 (2002).  https://doi.org/10.1109/ROBOT.2002.1013479
  13. 13.
    Gonzalez, E., Alvarez, O., Diaz, Y., Parra, C., Bustacara, C.: BSA: A Complete Coverage Algorithm. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp 2040–2044 (2005).  https://doi.org/10.1109/ROBOT.2005.1570413
  14. 14.
    Luo, C., Yang, S.X.: A real-time cooperative sweeping strategy for multiple cleaning robots. In: Proceedings of the IEEE Internatinal Symposium on Intelligent Control.  https://doi.org/10.1109/ISIC.2002.1157841, pp 660–665 (2002)
  15. 15.
    Driscoll, T.: Complete coverage path planning in an agricultural environment, Graduate Theses and Dissertations. http://lib.dr.iastate.edu/etd/12095
  16. 16.
    Castellanos, J.A., Tardos, J.D., Schmidt, G.: Building a global map of the environment of a mobile robot: the importance of correlations. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp 1053–1059 (1997).  https://doi.org/10.1109/ROBOT.1997.614274
  17. 17.
    Pharpatara, P., Hérissé, B., Bestaoui, Y.: 3-D Trajectory Planning of Aerial Vehicles Using RRT #x002a. IEEE Trans. Control Syst. Technol. 25(3), 1116–1123 (2017).  https://doi.org/10.1109/TCST.2016.2582144 CrossRefGoogle Scholar
  18. 18.
    Carsten, J., Ferguson, D., Stentz, A.: 3d Field D: Improved Path Planning and Replanning in Three Dimensions. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3381–3386 (2006).  https://doi.org/10.1109/IROS.2006.282516
  19. 19.
    Daily, R., Bevly, D.M.: Harmonic potential field path planning for high speed vehicles. In: 2008 American Control Conference, pp 4609–4614 (2008).  https://doi.org/10.1109/ACC.2008.4587222
  20. 20.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996).  https://doi.org/10.1109/70.508439 CrossRefGoogle Scholar
  21. 21.
    Pharpatara, P., Hérissé, B., Pepy, R., Bestaoui, Y.: Sampling-based path planning: a new tool for missile guidance. IFAC Proceedings Volumes 46(19), 131–136 (2013).  https://doi.org/10.3182/20130902-5-DE-2040.00091 CrossRefGoogle Scholar
  22. 22.
    Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Two-scale geometric path planning of quadrotor with obstacle avoidance: First step toward coverage algorithm. In: 2017 11th International Workshop on Robot Motion and Control (RoMoCo), pp 166–171 (2017).  https://doi.org/10.1109/RoMoCo.2017.8003909
  23. 23.
    Bouzid, Y., Bestaoui, Y., Siguerdidjane, H.: Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 979–984 (2017).  https://doi.org/10.1109/IROS.2017.8202264
  24. 24.
    Planning Algorithms / Motion Planning. http://planning.cs.uiuc.edu/
  25. 25.
    Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC), pp 7681–7687 (2010).  https://doi.org/10.1109/CDC.2010.5717430
  26. 26.
    Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient motion planning. In: 2013 IEEE International Conference on Mechatronics and Automation, pp 354–359 (2013).  https://doi.org/10.1109/ICMA.2013.6617944
  27. 27.
    Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47, 49–66 (2017).  https://doi.org/10.1016/j.mechatronics.2017.08.002 CrossRefGoogle Scholar
  28. 28.
    Ortega, R., García-Canseco, E.: Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control. 10(5), 432–450 (2004).  https://doi.org/10.3166/ejc.10.432-450 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Guerrero, J.A., Bestaoui, Y.: Uav path planning for structure inspection in windy environments. J. Intell. Robot. Syst. 69(1), 297–311 (2013).  https://doi.org/10.1007/s10846-012-9778-2 CrossRefGoogle Scholar
  30. 30.
    Flood, M.M.: The Traveling-Salesman Problem. Operations Research 4(1), 61–75 (1956).  https://doi.org/10.1287/opre.4.1.61 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhu, Q., Chen, S.: A New Ant Evolution Algorithm to Resolve TSP Problem. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp 62–66 (2007).  https://doi.org/10.1109/ICMLA.2007.18
  32. 32.
    Yan, X.s., Liu, H.m., Yan, J., Wu, Q.h.: A fast evolutionary algorithm for traveling salesman problem. In: 3rd International Conference on Natural Computation (ICNC 2007), vol. 4, pp 85–90 (2007).  https://doi.org/10.1109/ICNC.2007.23
  33. 33.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959).  https://doi.org/10.1287/mnsc.6.1.80 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pichpibul, T., Kawtummachai, R.: A Heuristic Approach Based on Clarke-Wright Algorithm for Open Vehicle Routing Problem, The Scientific World Journal 2013. e874349  https://doi.org/10.1155/2013/874349 (2013)
  35. 35.
    Huang, W.H.: Optimal line-sweep-based decompositions for coverage algorithms. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 1, pp 27–32 (2001).  https://doi.org/10.1109/ROBOT.2001.932525
  36. 36.
    Lilienthal, A.J., Duckett, T., Ishida, H., Werner, F.: Indicators of gas source proximity using metal oxide sensors in a turbulent environment. In: The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006, pp 733–738 (2006).  https://doi.org/10.1109/BIOROB.2006.1639177
  37. 37.
    Russell, R.A., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003).  https://doi.org/10.1016/S0921-8890(03)00120-9 CrossRefGoogle Scholar
  38. 38.
    Tao, D., Wu, T.Y.: A survey on barrier coverage problem in directional sensor networks. IEEE Sensors J. 15(2), 876–885 (2015).  https://doi.org/10.1109/JSEN.2014.2310180 CrossRefGoogle Scholar
  39. 39.
    Persson, P.-O.: Mesh generation for implicit geometries, Ph.D. thesis MIT (2005)Google Scholar
  40. 40.
    Bouzid, Y., Siguerdidjane, H., Bestaoui, Y., Zareb, M.: Energy Based 3d Autopilot for VTOL UAV Under Guidance & Navigation Constraints. J. Intell. Robot. Syst. pp. 1–22.  https://doi.org/10.1007/s10846-016-0441-1(2016)
  41. 41.
    Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002).  https://doi.org/10.1109/TAC.2002.800770 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Knott, G.D.: Cubic spline vector space basis functions.  https://doi.org/10.1007/978-1-4612-1320-8_13 (2000)
  43. 43.
    Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.  https://doi.org/10.1109/IROS.2012.6385458, pp 2815–2821 (2012)
  44. 44.
    Wang, J., Geamanu, M.S., Cela, A., Mounier, H., Niculescu, S.I.: Event driven model free control of quadrotor. In: 2013 IEEE International Conference on Control Applications (CCA).  https://doi.org/10.1109/CCA.2013.6662835, pp 722–727 (2013)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.IBISC LaboratoryUniversite d’Evry Val d’Essonne, Universite Paris-SaclayEvryFrance
  2. 2.L2S Laboratory, CentralesupelecUniversite Paris-SaclayGif sur yvetteFrance

Personalised recommendations