Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging


Mapping in the GPS-denied environment is an important and challenging task in the field of robotics. In the large environment, mapping can be significantly accelerated by multiple robots exploring different parts of the environment. Accordingly, a key problem is how to integrate these local maps built by different robots into a single global map. In this paper, we propose an approach for simultaneous merging of multiple grid maps by the robust motion averaging. The main idea of this approach is to recover all global motions for map merging from a set of relative motions. Therefore, it firstly adopts the pair-wise map merging method to estimate relative motions for grid map pairs. To obtain as many reliable relative motions as possible, a graph-based sampling scheme is utilized to efficiently remove unreliable relative motions obtained from the pair-wise map merging. Subsequently, the accurate global motions can be recovered from the set of reliable relative motions by the motion averaging. Experimental results carried on real robot data sets demonstrate that the proposed approach can achieve simultaneous merging of multiple grid maps with good performances.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. Int. Symp. Robot. Res., 467–474 (1988)

  2. 2.

    Wen, L.D.L., Jarvis, R.: A pure vision-based topological SLAM system. Int. J. Robot. Res. 31(4), 403–428 (2012)

  3. 3.

    Alitappeh, R.J., Pereira, G.A.S., Arajo, A.R., et al.: Multi-robot deployment using topological maps. J. Intell. Robot. Syst. 86(3–4), 641–661 (2017)

  4. 4.

    Collins, T.: Occupancy grid learning using contextual forward modelling. J. Intell. Robot. Syst. 64(3–4), 505–542 (2011)

  5. 5.

    Carlone, L., Ng, M.K., Du, J., et al.: Simultaneous localization and mapping using rao-blackwellized particle filters in multi robot systems. J. Intell. Robot. Syst. 63(2), 283–307 (2011)

  6. 6.

    Choudhary, S., Carlone, L., Nieto, C., et al.: Multi robot object-based SLAM. Int. Symp. Exper. Robot., 729–741 (2016)

  7. 7.

    Lazaro, M.T., Paz, L.M., Pinies, P., et al.: Multi-robot SLAM using condensed measurements. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 40(6), 1069–1076 (2013)

  8. 8.

    Saeedi, S., Trentini, M., Seto, M., et al.: Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 33(1), 3–46 (2016)

  9. 9.

    Carpin, S., Birk, A., Jucikas, V.: On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)

  10. 10.

    Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proc. IEEE 94(7), 1384–1397 (2006)

  11. 11.

    Li, H., Tsukada, M., Nashashibi, F., Parent, M.: Multivehicle cooperative local mapping: A methodology based on occupancy grid map merging. IEEE Trans. Intell. Transp. Syst. 15(5), 2089–2100 (2014)

  12. 12.

    Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–316 (2008)

  13. 13.

    Zhu, J., Du, S., Ma, L., et al.: Merging grid maps via point set registration. Int. J. Robot. Autom. 28 (2), 180–191 (2013)

  14. 14.

    Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

  15. 15.

    Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling, pp. 427–434 (2007)

  16. 16.

    Blanco, J.L., Gonzlezjimnez, J., Fernndezmadrigal, J.A.: A robust, multi-hypothesis approach to matching occupancy grid maps. Robotica 31(5), 687–701 (2013)

  17. 17.

    Saeedi, S., Paull, L., Trentini, M., et al.: Map merging for multiple robots using Hough peak matching. Robot. Auton. Syst. 62(10), 1408–1424 (2014)

  18. 18.

    Ma, L., Zhu, J., Zhu, L., et al.: Merging grid maps of different resolutions by scaling registration. Robotica 34(11), 2516–2531 (2016)

  19. 19.

    Lei, H., Jiang, G., Quan, L.: Fast descriptors and correspondence propagation for robust global point cloud registration. IEEE Trans. Image Process. 26(8), 3614–3623 (2017)

  20. 20.

    Zhu, J., Zhu, L., Li, Z.: Automatic multi-view registration of unordered range scans without feature extraction. Neurocomputing 171(C), 1444–1453 (2016)

  21. 21.

    Evangelidis, G.D., Kounades-Bastian, D., Horaud, R., Psarakis, E.Z.: A generative model for the joint registration of multiple point sets. Proc. European Conf. Comput. Vis. (ECCV) 8695, 109–122 (2014)

  22. 22.

    Govindu, V.M., Pooja, A.: On averaging multiview relations for 3D scan registration. IEEE Trans. Image Process. 23(3), 1289–1302 (2014)

  23. 23.

    Zhu, J: Surface reconstruction via efficient and accurate registration of multiview range scans. Opt. Eng. 53 (10), 102104 (2014)

  24. 24.

    Arrigoni, F., Rossi, B., Fusiello, A.: Global registration of 3D point sets via LRS decomposition. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 489–501 (2016)

  25. 25.

    Zhu, J., Zhu, L., Jiang, Z., et al.: Local to global registration of multi-view range scans using spanning tree. Comput. Electr. Eng. 58, 477–488 (2017)

  26. 26.

    Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. Comput. Vis. Pattern Recogn. (CVPR) 1, I-684-I-691 (2004)

  27. 27.

    Govindu, V.M.: Robustness in motion averaging. Asian Conf. Comput. Vis. 3852, 457–466 (2006)

  28. 28.

    Zhu, J., Meng, D., Li, Z.: Robust registration of partially overlapping point sets via genetic algorithm with growth operator. IET Image Process. 8(10), 582–590 (2014)

  29. 29.

    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

  30. 30.

    Brown, M.L., et al.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

  31. 31.

    Eliazar, A.I., Parr, R.: Hierarchical linear/constant time SLAM using particle filters for dense maps, NIPS, 339–346 (2005)

  32. 32.

    Li, Z., Zhu, J., Lan, K., et al.: Improved techniques for multi-view registration with motion averaging. In: International Conference on 3d Vision, pp. 713–719 (2014)

Download references


This work is supported by the National Natural Science Foundation of China under Grant nos. 61573273 and 91648121, the Natural Science Foundation of Shaanxi Province of China under Grant no. 2015JM6301, the Fundamental Research Funds for Central Universities under Grant No. xjj2018214.

Author information

Correspondence to Jihua Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 22.6 MB)

(MP4 22.6 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhu, J., Li, Y. et al. Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging. J Intell Robot Syst 94, 655–668 (2019).

Download citation


  • Multi-robot systems
  • Grid map merging
  • Iterative closet point
  • Image registration
  • Motion averaging