Advertisement

Journal of Intelligent & Robotic Systems

, Volume 93, Issue 1–2, pp 55–72 | Cite as

Robust Trajectory Tracking for Unmanned Aircraft Systems using a Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller

  • Filiberto Muñoz
  • Eduardo S. EspinozaEmail author
  • Iván González-Hernández
  • Sergio Salazar
  • Rogelio Lozano
Article
  • 147 Downloads

Abstract

Precision trajectory tracking problem for Unmanned Aerial Systems (UAS) is addressed in this work. A novel algorithm that combines a Nonsingular Modified Super-Twisting Controller with a High Order Sliding Mode Observer to enable an aerial vehicle tracking a desired trajectory under the assumption that i) its translational velocities are not available and ii) there are unmodeled dynamics and external disturbances. The proposed Sliding Mode Controller is based on a nonlinear sliding mode surface that ensures that the position and velocity tracking errors of all system’s state variables converge to zero in finite time. Moreover, the proposed controller generates a continuous control signal eliminating the chattering phenomenon. Finally, simulation results and an extensive set of experiments are presented in order to illustrate the robustness and effectiveness of the proposed control strategy.

Keywords

Nonsingular terminal modified super twisting High order sliding mode observer Unmanned aerial system RTK-GPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A short version of this paper, entitled: Robust Trajectory Tracking for Unmanned Aircraft Systems Using High Order Sliding Mode Controllers-Observers, was presented in ICUAS 2017. This work was partially supported by the Mexican National Council for Science and Technology project Laboratorio Nacional en Vehículos Autónomos y Exoesqueletos 295536.

References

  1. 1.
    Parker, G.G., Segalman, D.J., Robinett, R.D.: Decentralized sliding mode control for flexible link robots. J. Intell. Robot. Syst. 17(1), 61–79 (1996)CrossRefGoogle Scholar
  2. 2.
    Espinoza, E., García, O., Lugo, I., et al.: Modeling and sliding mode control of a micro Helicopter-Airplane system. J. Intell. Robot. Syst. 71(1), 469–486 (2014)CrossRefGoogle Scholar
  3. 3.
    Emelyanov, S.V., Korovin, S.K., Levantovskiy, L.V.: Higher order sliding modes in the binary control systems. Sov. Phys. 31(4), 291–293 (1986)Google Scholar
  4. 4.
    Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering Automation and Control Engineering. CRC Press, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Edwards, C., Fossas Colet, E., Fridman, L.: Advances in variable structure and sliding mode control, lecture notes in control and information sciences. Springer, Berlin (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Luque-Vega, L., Castillo-Toledo, B., Loukianov, A.G.: Robust block second order sliding mode control for a quadrotor. J. Frankl. Inst. 349(2), 719–739 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Besnard, L., Shtessel, Y.B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–684 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zheng, E.-H., Xiong, J.-J., Luo, J.-L.: Second order sliding mode control for a quadrotor UAV. ISA Trans. 53(4), 1350–13564 (2014)CrossRefGoogle Scholar
  9. 9.
    Mercado, D., Castillo, P., Castro, R., Lozano, R.: 2-Sliding Mode Trajectory Tracking Control and EKF Estimation for Quadrotors, pp. 8849–8854. 19th IFAC World Congress, Cape Town (2014)Google Scholar
  10. 10.
    Modirrousta, A., Khodabandeh, M.: A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerosp. Sci. Technol. 45, 294–308 (2015)CrossRefGoogle Scholar
  11. 11.
    Weidong, Z., Pengxiang, Z., Changlong, W., et al.: Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control, pp. 3398–3404. 34th Chinese Control Conference, Hangzhou (2015)Google Scholar
  12. 12.
    González-Hernández, I., Salazar, S., Lozano, R.: Robust trajectory-tracking control design for a small Quad-rotor aircraft via sliding modes, pp. 2271–2276. American Control Conference (ACC), Boston (2016)Google Scholar
  13. 13.
    Jayakrishnan, H.J.: Position and Attitude control of a Quadrotor UAV using Super Twisting Sliding Mode. IFAC-PapersOnLine 4th IFAC Conf. Adv. Control Optim. Dyn. Syst. Tiruchirappalli, India 49(1), 284–289 (2016)Google Scholar
  14. 14.
    Moreno, J.A.: A Lyapunov approach to output feedback control using second-order sliding modes. IMA J. Math. Control. Inf. 29(3), 291–308 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Muñoz, F., Bonilla, M., González-Hernández, I., et al.: Super Twisting vs Modified Super Twisting algorithm for altitude control of an Unmanned Aircraft System. In: 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City (2015)Google Scholar
  16. 16.
    Yang, Y., Qin, S., Jiang, P.: A modified super-twisting sliding mode control with inner feedback and adaptive gain schedule. Int. J. Adapt. Control Signal Process. 31(3), 398–416 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yi, Y., Qin, S.: A new modified super-twisting algorithm with double closed-loop feedback regulation. Trans. Inst. Meas. Control 39(11), 1–10 (2016)Google Scholar
  18. 18.
    Fhen, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49, 1715–1722 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, M., Wu, Q.-X., Cui, R.-X.: Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans. 52, 198–206 (2013)CrossRefGoogle Scholar
  20. 20.
    Xhao, L., Yu, J., Li, C., et al.: Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode. Appl. Math. Comput. 312, 23–35 (2017)MathSciNetGoogle Scholar
  21. 21.
    Zhu, Z., Ye, Y.: Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode. Adv Space Res. 54(1), 1064–1076 (2014)CrossRefGoogle Scholar
  22. 22.
    Yang, J., Li, S., Su, J., et al.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tran, M.-D., Kang, H.-J.: Nonsingular terminal sliding mode control of uncertain Second-Order nonlinear systems. Math. Probl. Eng. 2015, 1–8 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Madani, T., Daachi, B., Djouani, K.: Non-singular terminal sliding mode controller: Application to an actuated exoskeleton. Mechatronics 33, 136–145 (2016)CrossRefGoogle Scholar
  25. 25.
    Haghighi, D.A., Mobayen, S.: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems. ISA Trans. 75, 216–225 (2018)CrossRefGoogle Scholar
  26. 26.
    Liu, W., Jiang, X., Liu, G.: Super-twisting sliding mode control for carbon fiber multilayer diagonal loom. Adv. Mech. Eng. 8(10), 1–7 (2016)Google Scholar
  27. 27.
    Zhao, Z., Yang, J., Li, S., Zhang, Z., Guo, L.: Finite-time super-twisting sliding mode control for Mars entry trajectory tracking, vol. 352 (2015)Google Scholar
  28. 28.
    Zhao, Z., Gu, H., Zhang, J., Dinger, G.: Terminal sliding mode control based on super-twisting algorithm. J. Syst. Eng. Electron. 28(1), 145–150 (2017)Google Scholar
  29. 29.
    Tino, N., Siricharuanun, P., Pukdeboon, C.: Chaos synchronization of two different chaotic systems via nonsingular terminal sliding mode techniques. Thai J. Math. 1, 22–36 (2016)MathSciNetGoogle Scholar
  30. 30.
    Levant, A.: Higher order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9-10), 924–941 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Benallegue, A., Mokhtari, A., Fridman, L.: High order sliding mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18(4-5), 427–440 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ríos, H., Davila, J., Fridman, L.: High-order sliding mode observers for nonlinear autonomous switched systems with unknown inputs. J. Frankl. Inst. 349(10), 2975–3002 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Castillo, P., Garca, P., Lozano, R., Albertos, P.: Modelado y Estabilizacin de un Helicptero con Cuatro Rotores. Revista Iberoam. Autom. Inf. Indust. 4(1), 41–57 (2007)CrossRefGoogle Scholar
  34. 34.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial Vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  35. 35.
    Garca Carrillo, L.R., Dzul Lpez, A.E., Lozano, R., Pgard, C.: Modeling the Quad-Rotor Mini-Rotorcraft. In: Quad Rotorcraft Control. Advances in Industrial Control. Springer, London (2013)Google Scholar
  36. 36.
    Chalanga, A., Kamal, S., Fridman, Leonid M., et al.: How to implement Super-Twisting Controller based on sliding mode observer. In: 13th International Workshop on Variable Structure Systems. Nantes, pp. 1–6 (2014)Google Scholar
  37. 37.
    Chalanga, A., Kamal, S., Fridman, L.M., et al.: Implementation of Super-Twisting control: Super-twisting and higher order Sliding-Mode Observer-Based approaches. IEEE Trans. Ind. Electron. 63(6), 3777–3685 (2016)CrossRefGoogle Scholar
  38. 38.
    Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Moreno, J.A.: Lyapunov function for Levant’s Second Order Differentiator. In: 51st IEEE Conference on Decision and Control (CDC). Maui Hawai, pp. 6448–6453 (2012)Google Scholar
  40. 40.
    Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (CDC). cancun, pp. 2856–2861 (2008)Google Scholar
  41. 41.
    Defoort, M., Djemai, M.: A Lyapunov-based design of a modified super-twisting algorithm for the Heisenberg system. IMA J. Math. Control Inform 30(2), 185–204 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Bertrand, S., Gunard, N., Hamel, T., et al.: A hierarchical controller for miniature VTOL UAVs: Design and stability analysis using singular perturbation theory. Control Eng Pract. 19(10), 1099–1108 (2011)CrossRefGoogle Scholar
  43. 43.
    Liu, H., Bai, Y., Lu, G., et al.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3-4), 595–608 (2014)CrossRefGoogle Scholar
  44. 44.
    Mizoshita, Y., Hasegawa, S., Takaishi, K.: Vibration minimized access control for disk drives. IEEE T. Magn. 32(3), 1793–1798 (1996)CrossRefGoogle Scholar
  45. 45.
    Waslander, S.L., Wang, C.: Wind Disturbance Estimation and Rejection for Quadrotor Position Control. Aerospace Conference, Seatle Washington (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Filiberto Muñoz
    • 1
  • Eduardo S. Espinoza
    • 1
    Email author
  • Iván González-Hernández
    • 1
  • Sergio Salazar
    • 2
  • Rogelio Lozano
    • 2
    • 3
  1. 1.Cátedras Conacyt. UMI LAFMIA, CINVESTAV-IPNMéxico CityMéxico
  2. 2.UMI LAFMIA, CINVESTAV-IPNMexico CityMéxico
  3. 3.UTC-HEUDIASyC, Centre de Recherches de RoyallieuCompiegneFrance

Personalised recommendations