Advertisement

Journal of Intelligent & Robotic Systems

, Volume 93, Issue 3–4, pp 723–743 | Cite as

Employing Natural Terrain Semantics in Motion Planning for a Multi-Legged Robot

  • Dominik BelterEmail author
  • Jan Wietrzykowski
  • Piotr Skrzypczyński
Open Access
Article

Abstract

This paper considers motion planning for a six-legged walking robot in rough terrain, considering both the geometry of the terrain and its semantic labeling. The semantic labels allow the robot to distinguish between different types of surfaces it can walk on, and identify areas that cannot be negotiated due to their physical nature. The proposed environment map provides to the planner information about the shape of the terrain, and the terrain class labels. Such labels as “wall” and “plant” denote areas that have to be avoided, whereas other labels, “grass”, “sand”, “concrete”, etc. represent negotiable areas of different properties. We test popular classification algorithms: Support Vector Machine and Random Trees in the task of producing proper terrain labeling from RGB-D data acquired by the robot. The motion planner uses the A algorithm to guide the RRT-Connect method, which yields detailed motion plans for the multi-d.o.f. legged robot. As the A planner takes into account the terrain semantic labels, the robot avoids areas which are potentially risky and chooses paths crossing mostly the preferred terrain types. We report experimental results that show the ability of the new approach to avoid areas that are considered risky for legged locomotion.

Keywords

Walking robot Mapping Terrain classification Motion planning 

Notes

Acknowledgements

This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780883. We thank Szymon Bartoszyk and Patryk Kasprzak who worked on the environment model for the indoor experiments and provided the initial version of the terrain classifier.

Supplementary material

(MP4 66.2 MB)

References

  1. 1.
    Bajracharya, M., Ma, J., Malchano, M., Perkins, A., Rizzi, A., Matthies, L.: High fidelity day/night stereo mapping with vegetation and negative obstacle detection for vision-in-the-loop walking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3663–3670. Tokyo (2013)Google Scholar
  2. 2.
    Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot. In: Proceedings of International Workshop on Robot Motion and Control, pp. 29–34. Wasowo (2017)Google Scholar
  3. 3.
    Belter, D., Łabȩcki, P., Fankhauser, P., Siegwart, R.: RGB-D, terrain perception and dense mapping for legged robots. Int. J. Appl. Math. Comput. Sci. 26(1), 81–97 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Belter, D., Łabȩcki, P., Skrzypczyński, P.: Estimating terrain elevation maps from sparse and uncertain multi-sensor data. In: Proceedings IEEE International Conference on Robotics and Biomimetics, pp. 715–722. Guangzhou (2012)Google Scholar
  5. 5.
    Belter, D., Łabȩcki, P., Skrzypczyński, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot. 33(3), 337–370 (2016)Google Scholar
  6. 6.
    Belter, D., Skrzypczyński, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robot. 28(4), 497–528 (2011)zbMATHGoogle Scholar
  7. 7.
    Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, AISC, vol. 267, pp. 343–352 (2014)Google Scholar
  8. 8.
    Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod robot. In: Proceedings of the Australasian Conference on Robotics and Automation (2013)Google Scholar
  9. 9.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pp. 144–152 (1992)Google Scholar
  10. 10.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)zbMATHGoogle Scholar
  11. 11.
    Chang, C.C., Lin, C.J.: libSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)Google Scholar
  12. 12.
    Chetan, J., Krishna, M., Jawahar, C.V.: Fast and spatially-smooth terrain classification using monocular camera. In: International Conference on Pattern Recognition, pp. 4060–4063. Istanbul (2010)Google Scholar
  13. 13.
    Chilian, A., Hirschmüller, H.: Stereo camera based navigation of mobile robots on rough terrain. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571–4576 (2009)Google Scholar
  14. 14.
    Droeschel, D., Schwarz, M., Behnke, S.: Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robot. Auton. Syst. 88, 104–115 (2017)Google Scholar
  15. 15.
    Dryanovski, I., Morris, W., Xiao, J.: Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1553–1559 (2010)Google Scholar
  16. 16.
    Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., Siegwart, R.: Kinect v2 for mobile robot navigation: Evaluation and modeling. In: Proceedings of International Conference on Advanced Robotics, pp. 388–394. Istanbul (2015)Google Scholar
  17. 17.
    Giguére, P., Dudek, G., Saunderson, S., Prahacs, C.: Environment identification for a running robot using inertial and actuator cues. In: Robotics: Science and Systems (2006)Google Scholar
  18. 18.
    Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller, U., LeCun, Y.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 (2009)Google Scholar
  19. 19.
    Hauser, K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.: Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11-12), 1325–1349 (2008)Google Scholar
  20. 20.
    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2828–2833 (2010)Google Scholar
  21. 21.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)Google Scholar
  22. 22.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)Google Scholar
  23. 23.
    Kolter, J.Z., Rodgers, M.P., Ng, A.Y.: A control architecture for quadruped locomotion over rough terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 811–818 (2008)Google Scholar
  24. 24.
    Kraft, M., Nowicki, M., Schmidt, A., Fularz, M., Skrzypczyński, P.: Toward evaluation of visual navigation algorithms on RGB-D data from the first- and second-generation Kinect. Mach. Vis. Appl. 28(1), 61–74 (2017)Google Scholar
  25. 25.
    Krotkov, E., Hoffman, R.: Terrain mapping for a walking planetary rover. IEEE Trans. Robot. Autom. 10 (6), 728–739 (1994)Google Scholar
  26. 26.
    Kuffner, J., LaValle, S.: RRT-Connect: An efficient approach to single-query path planning. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 995–1001 (2000)Google Scholar
  27. 27.
    Laible, S., Khan, Y., Zell, A.: Terrain classification with conditional random ields on fused 3D lidar and camera data. In: Proceedings of European Conference on Mobile Robots, pp. 172–177. Barcelona (2013)Google Scholar
  28. 28.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B.R. (ed.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A. K. Peters/CRC Press (2001)Google Scholar
  29. 29.
    Maturana, D., Chou, P., Uenoyama, M., Scherer, S.: Real-time semantic mapping for autonomous off-road navigation. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics, SPAR, vol. 5, pp. 335–350. Springer (2018)Google Scholar
  30. 30.
    Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod walking robot. In: Proceedings of International Workshop on Robot Motion and Control, pp. 240–245. Poznań (2015)Google Scholar
  31. 31.
    Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an opensource SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)Google Scholar
  32. 32.
    Nowicki, M., Belter, D., Kostusiak, A., Cízek, P., Faigl, J., Skrzypczyński, P.: An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors. Indus. Robot: Int. J. 44(4), 428–441 (2017)Google Scholar
  33. 33.
    Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)zbMATHGoogle Scholar
  34. 34.
    Papadakis, P.: Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng. Appl. Artif. Intel. 26(4), 1373–1385 (2013)Google Scholar
  35. 35.
    Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to elevation maps for outdoor terrain mapping and loop closing. Int. J. Robot. Res. 26(2), 217–230 (2007)Google Scholar
  36. 36.
    Roennau, A., Kerscher, T., Ziegenmeyer, M., Marius, J., Zölner, J.M., Dillmann, R.: Adaptation of a six-legged walking robot to its local environment. In: Kozłowski, K. (ed.) Robot Motion and Control 2009, LNCIS, vol. 396, pp. 155–164. Springer (2009)Google Scholar
  37. 37.
    Rusu, R.B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J.C., Beetz, M.: Leaving flatland: Efficient real-time 3D perception and motion planning. J. Field Robot. 26(10), 841–862 (2009)Google Scholar
  38. 38.
    Sanctis, L., Garrido, S., Moreno, L., Blanco, D.: Outdoor motion planning using fast marching. In: Tosun, O. et al. (eds.) Mobile Robotics: Solutions and Challenges, pp. 1071–1080. World Scientific, Singapore (2009)Google Scholar
  39. 39.
    Satzinger, B., Lau, C., Byl, M., Byl, K.: Tractable locomotion planning for RoboSimian. Int. J. Robot. Res. 34(13), 1541–1558 (2015)Google Scholar
  40. 40.
    Stejskal, M., Mrva, J., Faigl, J.: Road following with blind crawling robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3612–3617 (2016)Google Scholar
  41. 41.
    Thrun, S., Montemerlo, M., Aron, A.: Probabilistic terrain analysis for high-speed desert driving. In: Robotics: Science and Systems. Philadelphia (2006)Google Scholar
  42. 42.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)Google Scholar
  43. 43.
    Valada, A., Oliveira, G., Brox, T., Burgard, W.: Towards robust semantic segmentation using deep fusion. In: RSS Workshop on Limits and Potentials of Deep Learning in Robotics. Ann Arbor (2016)Google Scholar
  44. 44.
    Vonasek, V., Faigl, J., Krajnik, T., Preucil, L.: RRT-path – a guided rapidly exploring random tree. In: Kozłowski, K. (ed.) Robot Motion and Control 2009, LNCIS, vol. 396, pp. 307–316. Springer (2009)Google Scholar
  45. 45.
    Walas, K.: Terrain classification and negotiation with a walking robot. J. Intell. Robot. Syst. 78(3), 401–423 (2015)Google Scholar
  46. 46.
    Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P.A., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1184–1189 (2016)Google Scholar
  47. 47.
    Wietrzykowski, J., Skrzypczyński, P.: Terrain classification for autonomous navigation in public urban areas. In: Silva, M. et al. (eds.) Human-Centric Robotics, pp. 319–326. World-Scientific (2017)Google Scholar
  48. 48.
    Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A., Raibert, M.: Autonomous navigation for BigDog. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4736–4741 (2010)Google Scholar
  49. 49.
    Wurm, K.M., Stachniss, C., Kümmerle, R., Burgard, W.: Improving robot navigation in structured outdoor environments by identifying vegetation from laser data. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1217–1222. St. Louis (2009)Google Scholar
  50. 50.
    Ye, C., Borenstein, J.: A novel filter for terrain mapping with laser rangefinders. IEEE Trans. Robot. Autom. 20(5), 913–921 (2004)Google Scholar
  51. 51.
    Zhong, C., Liu, S., Zhang, B., Lu, Q., Wang, J., Wu, Q., Gao, F.: A fast on-line global path planning algorithm based on regionalized roadmap for robot navigation. IFAC-PapersOnLine 50(1), 319–324 (2017). 20th IFAC World CongressGoogle Scholar
  52. 52.
    Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J.A., Atkeson, C.G., Kuffner, J.: Optimization and learning for rough terrain legged locomotion. Int. J. Robot. Res. 30(2), 175–191 (2011)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Control, Robotics and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations