Journal of Intelligent & Robotic Systems

, Volume 91, Issue 1, pp 85–99 | Cite as

Bio-Inspired Robotics: A Spatial Cognition Model integrating Place Cells, Grid Cells and Head Direction Cells

  • Gonzalo Tejera
  • Martin Llofriu
  • Alejandra Barrera
  • Alfredo WeitzenfeldEmail author


The paper presents a bio-inspired robotics model for spatial cognition derived from neurophysiological and experimental studies in rats. The model integrates Hippocampus place cells providing long-term spatial localization with Enthorinal Cortex grid cells providing short-term spatial localization in the form of “neural odometry”. Head direction cells provide for orientation in the rat brain. The spatial cognition model is evaluated in simulation and experimentation showing a reduced number of localization errors during robot navigation when contrasted to previous versions of our model.


Spatial cognition Robot navigation Place cells Grid cells Head direction cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded in part by NSF IIS Robust Intelligence research collaboration grant #1117303 at USF and U. Arizona entitled “Investigations of the Role of Dorsal versus Ventral Place and Grid Cells during Multi-Scale Spatial Navigation in Rats and Robots,” and also supported in part by the “Agencia Nacional de Investigacion e Innovación (ANII)” and by the “Asociación Mexicana de Cultura, A. C.”


  1. 1.
    Agster, K.L., Burwell, R.D.: Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Behav. Brain Res. 254, 50–64 (2013). ISSN 0166–4328CrossRefGoogle Scholar
  2. 2.
    Alvernhe, A., Sargolini, F., Poucet, B.: Rats build and update topological representations through exploration. Anim. Cogn. 15, 359–368 (2011)CrossRefGoogle Scholar
  3. 3.
    Antonelo, E., Schrauwen, B.: Unsupervised learning in reservoir computing: modeling hippocampal place cells for small mobile robots. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) Artificial Neural Networks - ICANN 2009, volume 5768 of Lecture Notes in Computer Science, chapter 77. ISBN 978-3-642-04273-7, pp. 747–756. Springer, Berlin (2009)Google Scholar
  4. 4.
    Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Trans. Neural Netw. 15(3), 639–652 (2004)CrossRefGoogle Scholar
  5. 5.
    Barrera, A., Caceres, A., Weitzenfeld, A., Ramirez-Amaya, V.: Comparative experimental studies on spatial memory and learning in rats and robots. J. Intell. Robot. Syst. 63(3-4), 361–397 (2011)CrossRefGoogle Scholar
  6. 6.
    Barrera, A., Tejera, G., Llofriu, M., Weitzenfeld, A.: Learning spatial localization: From rat studies to computational models of the hippocampus. Spat. Cogn. Comput. 15(1), 27–59 (2015)CrossRefGoogle Scholar
  7. 7.
    Barrera, A., Weitzenfeld, A.: Biologically-inspired robot spatial cognition based on rat neurophysiological studies. J. Auto. Robot. Springer 25(1-2), 147–169 (2008)CrossRefGoogle Scholar
  8. 8.
    Barto, A.G.: Adaptive critics and the basal ganglia. In: Houk, C., Davis, J.L., Beiser, D. (Eds.), Models ofinformation processing in the basal ganglia, MIT Press Cambridge MA pp. 215-232 (1995)Google Scholar
  9. 9.
    Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12, 869–880 (1996)CrossRefGoogle Scholar
  10. 10.
    Brown, M.A., Sharp, P.E.: Simulation of spatial learning in the morris water maze by a neural network model of the hippocampal formation and nucleus accumbens. Hippocampus 5, 171–188 (1995)CrossRefGoogle Scholar
  11. 11.
    Burak, Y., Fiete, I.R.: Accurate path integration in continuous attractor network models of grid cells, PLoS Comput. Biol (2009)Google Scholar
  12. 12.
    Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Netw. 7(6-7), 1065–1081 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Burgess, N., Barry, C., O’Keefe, J.: An Oscillatory Interference Model of Grid Cell Firing. Hippocampus 17, 801–812 (2007)CrossRefGoogle Scholar
  14. 14.
    Bush, D., Burgess, N.: A hybrid oscillatory interference / continuous attractor network model of grid cell firing. J. Neurosci. 34, 5065–5079 (2014)CrossRefGoogle Scholar
  15. 15.
    Caluwaerts, K., Staffa, M., N’Guyen, S., Grand, C., Dollé, L, Favre-Felix, A., Girard, B., Khamassi, M.: A biologically inspired meta-control navigation system for the Psikharpax rat robot. IOP Bioinspiration & Biomimetics 7(2), 025009 (2012). CrossRefGoogle Scholar
  16. 16.
    Cheung, A., Ball, D., Milford, M., Wyeth, G., Wiles, J.: Maintaining a cognitive map in darkness: The need to fuse boundary knowledge with path integration. PLoS Comput. Biol. 8(8) (2012).
  17. 17.
    Cho, J., Sharp, P.: Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115(1), 3–25 (2001)CrossRefGoogle Scholar
  18. 18.
    Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bioinspired model of switching between navigation strategies. Biol. Cybern. 103(4), 299–317 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus 14(2), 180–192 (2004)CrossRefGoogle Scholar
  20. 20.
    Filliat, D., Meyer, J.-A.: Global localization and topological map learning for robot navigation, From Animals to Animats 7, Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, edited by Hallam et al The MIT Press pp. 131-140 (2002)Google Scholar
  21. 21.
    Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006)CrossRefGoogle Scholar
  22. 22.
    Fyhn, M., Molden, S., Witter, M., Moser, E., Moser, M.B.: Spatial representation in the entorhinal cortex, Science, Vol 305 pp. 1258-1264 Sept (2004)Google Scholar
  23. 23.
    Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gibson, J.J.: The visual perception of objective motion and subjective movement. Psychol. Rev. 61, 304–314 (1954)CrossRefGoogle Scholar
  25. 25.
    Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, acting, and knowing: Toward an ecological psychology, pp. 67–82. Erlbaum, Hillsdale (1977)Google Scholar
  26. 26.
    Granon, S., Poucet, B.: Involvement of the rat prefrontal cortex in cognitive functions: A central role for the prelimbic area. Psychobiology 28(2), 229–237 (2000)Google Scholar
  27. 27.
    Guazzelli, A., Corbacho, F.J., Bota, M., Arbib, M.A.: Affordances, motivation, and the world graph theory. Adapt. Behav. 6(3-4), 435–471 (1998)CrossRefGoogle Scholar
  28. 28.
    Guzowski, J. F., Knierim, J. J., Moser, E. I.: Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4), 581–584 (2004)CrossRefGoogle Scholar
  29. 29.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.: Microstructure of a spatial map in the entorhinal cortex, Nature, Vol 436 pp. 801-806 Aug (2005)Google Scholar
  30. 30.
    Hasselmo, M., Giocomo, M., Zilli, E.: Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampu,s 17, 1252–1271 (2007)CrossRefGoogle Scholar
  31. 31.
    Hebb, D.O.: The organization of behavior: a neuropsychological theory. Wiley-Interscience, New York (1949)Google Scholar
  32. 32.
    Houk, J. C., Adams, J. L., Barto, A. G.: In Models of information processing in the basal ganglia, edited by J. C. Houk, J. L. Davis and D. G. Beiser, MIT Press, pp. 249–270 (1995)Google Scholar
  33. 33.
    Jeffery, K.J., O’Keefe, J.M.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999)CrossRefGoogle Scholar
  34. 34.
    Kelley, A.: Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27(8), 765–776 (2004)CrossRefGoogle Scholar
  35. 35.
    Krupic, J., Burgess, N., O’Keefe, J.: Neural representations of location composed of spatially periodic bands. Science 337, 853–857 (2012)CrossRefGoogle Scholar
  36. 36.
    Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B., Moser, E.: Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305(5688), 1295–1298 (2004)CrossRefGoogle Scholar
  37. 37.
    Leutgeb, S., Leutgeb, J.K.: Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learn. Mem. 14(11), 745–57 (2007)CrossRefGoogle Scholar
  38. 38.
    McNaughton, B., Battaglia, F., Jensen, O., Moser, E., Moser, M.B.: Path integration and the neural basis of the ‘cognitive map’, Nature Reviews Neuroscience, Vol 7 pp. 663-678 Aug (2006 )Google Scholar
  39. 39.
    McNaughton, B., Knierim, J.J., Wilson, M.A.: Vector encoding and the vestibular foundations of spatial cognition. In: Gazzaniga, M. (Ed), The cognitive neurosciences. MIT Press Boston, pp. 585–595 (1994)Google Scholar
  40. 40.
    McNaughton, B., Mizumori, S., Barnes, C., Leonard, B., Marquis, M., Green, E.: Cortical representation of motion during unrestrained spatial navigation in the rat. Cereb. Cortex 4, 27–39 (1994)CrossRefGoogle Scholar
  41. 41.
    Mhatre, H., Gorchetchnikov, A., Grossberg, S.: Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus 22(2), 320–334 (2012)CrossRefGoogle Scholar
  42. 42.
    Milford, M., Wyeth, G.: Spatial mapping and map exploitation: a bio-inspired engineering perspective. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) Spatial Information Theory, pp. 203–221. Springer-Verlag, Heidelberg (2007)Google Scholar
  43. 43.
    Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired SLAM system. Int. J. Robot. Res. 29(9), 1131–1153 (2010)CrossRefGoogle Scholar
  44. 44.
    Mittelstaedt, M., Mittelstaedt, H.: Homing by path integration in a mammal. In: Papi, F., Wallraff, H.G. (eds.) Avian Navigation, pp. 290–297. Springer Verlag, Berlin (1982)Google Scholar
  45. 45.
    Morris, R.G.M.: Spatial localization does not require the presence of local cues, Learning and Motivation, vol. 12, pp. 239 –260 (1981)Google Scholar
  46. 46.
    Morris, R.G.M.: Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984). ElsevierCrossRefGoogle Scholar
  47. 47.
    Moser, E., Kropff, E., Moser, M.B.: Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)CrossRefGoogle Scholar
  48. 48.
    Navratilova, Z., Giocomo, L.M., Fellous, J.M., Hasselmo, M., McNaughton, B.: Phase precession and variable spatial scaling in a periodic attractor map model of medial Entorhinal grid cells with realistic after-spike dynamics, Hippocampus (2011)Google Scholar
  49. 49.
    O’Keefe, J., Conway, D. H.: Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)Google Scholar
  50. 50.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford University Press, Oxford (1978)Google Scholar
  51. 51.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 34(1), 171–175 (1971)CrossRefGoogle Scholar
  52. 52.
    O’Keefe, J.: Spatial memory within and without the hippocampal system, in Neurobiology of the Hippocampus. In: Seifert, W. (ed.) , pp. 375–403. Academic Press, New York (1983)Google Scholar
  53. 53.
    Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159(3), 349–359 (2004)CrossRefGoogle Scholar
  54. 54.
    Poucet, B.: Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100(2), 163–182 (1993)CrossRefGoogle Scholar
  55. 55.
    Quirk, G. J., Muller, R. U., Kubie, J. L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10(6), 2008–2017 (1990)CrossRefGoogle Scholar
  56. 56.
    Ranck, J. B. Jr: Head-direction cells in the deep layers of dorsal presubiculum in freely moving rats. Soc. Neurosci. Abstr. 10, 599 (1984)Google Scholar
  57. 57.
    Redish, A., Touretzky, D.: Cognitive maps beyond the hippocampus. Hippocampus 7(1), 15–35 (1997)CrossRefGoogle Scholar
  58. 58.
    Rolls, E. T.: Head direction and spatial view cells in primates, and brain mechanisms for path integration. In: Head direction cells and the neural mechanisms underlying directional orientation, pp. 299–318. MIT Press, Cambridge (2005)Google Scholar
  59. 59.
    Samu, D., Erős, P., Ujfalussy, B., Kiss, T.: Robust path integration in the entorhinal grid cell system with hippocampal feed-back. Biol. Cybern. 101(1), 19–34 (2009)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Schultz, W., Tremblay, L., Hollerman, J.: Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 37(4-5), 421–429 (1998)CrossRefGoogle Scholar
  61. 61.
    Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031 (2006)CrossRefGoogle Scholar
  62. 62.
    Taube, J.S., Muller, R.I., Ranck, J.B. Jr: Head direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)CrossRefGoogle Scholar
  63. 63.
    Taube, J.S.: Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55, 225–56 (1998)CrossRefGoogle Scholar
  64. 64.
    Tejera, G., Barrera, A., Llofriu, M., Weitzenfeld, A.: Solving uncertainty during robot navigation by integrating grid cell and place cell firing based on rat spatial cognition studies, International Conference on Advanced Robotics, Proc. ICAR 2013, Montevideo, Uruguay (2013)Google Scholar
  65. 65.
    Tejera, G., Llofriu, M., Barrera, A., Weitzenfeld, A.: A Spatial Cognition Model Integrating Grid Cells and Place Cells. In: International Joint Conference on Neural Networks, Proc. IJCNN 2015, July 12-17, Killarney, Ireland (2015)Google Scholar
  66. 66.
    Tolman, E.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)CrossRefGoogle Scholar
  67. 67.
    Towse, B., Barry, C., Bush, D., Burgess, N.: Optimal configurations of spatial scale for grid cell firing under noise and uncertainty, Philosophical Transaction of the Royal Society (2013)Google Scholar
  68. 68.
    Weitzenfeld, A., Arbib, M., Alexander A. MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Gonzalo Tejera
    • 1
  • Martin Llofriu
    • 2
  • Alejandra Barrera
    • 3
  • Alfredo Weitzenfeld
    • 2
    Email author
  1. 1.Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Computer Science and EngineeringUniversity of South FloridaTampaUSA
  3. 3.Departamento de ComputaciónInstituto Tecnológico Autónomo de MexicoMexico CityMexico

Personalised recommendations