Advertisement

Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain

  • Bijo Sebastian
  • Pinhas Ben-Tzvi
Article
  • 150 Downloads

Abstract

This paper describes a novel physics-based path planning architecture for autonomous navigation of tracked vehicles in rough terrain conditions. Unlike conventional path planning applications for smooth and structured environments, factors such as slip, slope of the terrain, robot actuator limitations, and dynamics of robot terrain interactions must be considered for rough terrain applications. The proposed path planning method consists of a hybrid planner/simulator, which takes into account all of the above factors by simulating the closed loop motion of the robot with a low-level controller on a realistic terrain model inside a physics engine. Once a feasible path to the goal is obtained, the same low-level closed loop controller is then used to execute the proposed path on the actual robot. The proposed architecture uses the D* Lite algorithm working on a 2D grid representation of the terrain as the high-level planner, Bullet as the physics engine and a hybrid automaton as the low-level closed loop controller. The proposed method is validated both in simulation and through experiments. Inferences based on the results from simulations and experiments show that the proposed planner is more effective in providing an optimal feasible path as compared to existing methodologies, demonstrating clear advantages for rough, unstructured terrain planning. Based on the results, possible improvements to the method are proposed for future work.

Keywords

Motion planning Mobile robot navigation Rough terrain Tracked vehicle Physics engine Hybrid automaton controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported in part by the US Army Medical Research & Material Command’s Telemedicine & Advanced Technology Research Center (TATRC), under Contract No. W81XWH-16-C-0062. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other documentation.

Supplementary material

(MP4 49.7 MB)

References

  1. 1.
    Odedra, S., Prior, S., Karamanoglu, M.: Investigating the mobility of unmanned ground vehicles. In: Proceedings of the international conference on manufacturing and engineering systems. Huwei, Yunlin (2009)Google Scholar
  2. 2.
    Murphy, R.R.: A decade of rescue robots. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5448–5449 (2012)Google Scholar
  3. 3.
    Murphy, R.R., et al.: Search and rescue robotics. In: Siciliano, B. , Khatib, O. (eds.) Springer handbook of robotics, pp. 1151–1173. Berlin, Heidelberg (2008)Google Scholar
  4. 4.
    Nagatani, K. et al.: Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. F. Robot. 30(1), 44–63 (2013)CrossRefGoogle Scholar
  5. 5.
    Murphy R.R.: Disaster robotics, vol. 1. The MIT Press, Cambridge (2014)Google Scholar
  6. 6.
    Davids, A.: Urban search and rescue robots: from tragedy to technology. IEEE Intell. Syst. 17(2), 81–83 (2002)Google Scholar
  7. 7.
    Snyder, R.G.: Robots assist in search and rescue efforts at WTC. IEEE Robot. Autom. Mag. 8(4), 26–28 (2001)Google Scholar
  8. 8.
    Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B.: Mobility and sensing demands in USAR. In: 2000 26th annual conference of the ieee industrial electronics society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies, vol. 1, pp. 138–142 (2000)Google Scholar
  9. 9.
    Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  10. 10.
    U.S. Army Medical Research and Material Command, “Unmanned Systems Teaming for Semi-Autonomous Casualty Extraction,” SBIR-STTR, 2017. [Online]. Available: https://www.sbir.gov/sbirsearch/detail/1319095. [Accessed: 11-Feb-2017]
  11. 11.
    Beebe, M.K., Gilbert, G.R.: Robotics and unmanned systems – ‘Game changers’ for combat medical missions. In: Proc. NATO RTO-HFM 182 Symp. Adv. Technol. New Proced. Med. F. Oper. (2010)Google Scholar
  12. 12.
    Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for Self-Driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)CrossRefGoogle Scholar
  13. 13.
    LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lamon, P.: 3D-Position tracking and control for all-terrain robots, 1st edn., vol. 43. Springer, Berlin (2008)Google Scholar
  15. 15.
    Tarokh, M., McDermott, G. J.: Kinematics modeling and analyses of articulated rovers. IEEE Trans. Robot. 21(4), 539–553 (2005)CrossRefGoogle Scholar
  16. 16.
    Kumar, P., Saab, W., Ben-Tzvi, P.: A hybrid tracked-wheeled multi-directional mobile robot. IEEE/ASME Trans. Mechatronics, p Under revision (2017)Google Scholar
  17. 17.
    Ben-Tzvi, P., Goldenberg, A.A., Zu, J.W.: Articulated hybrid mobile robot mechanism with compounded mobility and manipulation and on-board wireless sensor/actuator control interfaces. Mechatronics 20(6), 627–639 (2010)CrossRefGoogle Scholar
  18. 18.
    Currier, P.N., Wicks, A.L.: A novel method for prediction of mobile robot maneuvering spaces. J. Terramechanics 50(2), 85–97 (2013)CrossRefGoogle Scholar
  19. 19.
    Thrun, S. et al.: Stanley: the robot that won the DARPA grand challenge. J. F. Robot. 23(9), 661–692 (2006)CrossRefGoogle Scholar
  20. 20.
    Bacha, A. et al.: Odin: Team VictorTango’s entry in the DARPA urban challenge. J. F. Robot. 25(8), 467–492 (2008)CrossRefGoogle Scholar
  21. 21.
    Urmson, C.P. et al.: High speed navigation of unrehearsed terrain?: Red Team Technology for Grand Challenge 2004 (2004)Google Scholar
  22. 22.
    Currier, P.N.: A method for modeling and prediction of ground vehicle dynamics and stability in autonomous systems. Virginia Polytechnic Institute and State University (2011)Google Scholar
  23. 23.
    Chu, K., Lee, M., Sunwoo, M.: Local path planning for Off-Road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst. 13(4), 1599–1616 (2012)CrossRefGoogle Scholar
  24. 24.
    Goswami, A.: Hierarchical Off-Road Path planning and its validation using a scaled autonomous car. Clemson university (2017)Google Scholar
  25. 25.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press. (2005)Google Scholar
  26. 26.
    Siciliano, B, Khatib, O: Springer Handbook of Robotics. Springer-Verlag New York, Inc., Secaucus (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: robust navigation in an indoor office environment. In: 2010 IEEE international conference on robotics and automation, pp. 300–307 (2010)Google Scholar
  28. 28.
    Reina, G., Bellone, M., Spedicato, L., Giannoccaro, N.I.: 3D Traversability awareness for rough terrain mobile robots. Sens. Rev. 34(2), 220–232 (2014)CrossRefGoogle Scholar
  29. 29.
    Castejón, C., Boada, B.L., Blanco, D., Moreno, L.: Traversable region modeling for outdoor navigation. J. Intell. Robot. Syst. Theory Appl. 43(2–4), 175–216 (2005)CrossRefGoogle Scholar
  30. 30.
    Garrido, S., Moreno, L., Martín, F., Álvarez, D.: Fast marching subjected to a vector field–path planning method for mars rovers. Expert Syst. Appl. 78, 334–346 (2017)CrossRefGoogle Scholar
  31. 31.
    Raja, R., Dutta, A., Venkatesh, K.S.: New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Rob. Auton. Syst. 72, 295–306 (2015)CrossRefGoogle Scholar
  32. 32.
    Amorim, D., Ventura, R.: Towards efficient path planning of a mobile robot on rough terrain, pp. 22–27 (2014)Google Scholar
  33. 33.
    Konolige, K.: A gradient method for realtime robot control. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 1, pp. 639–646 (2000)Google Scholar
  34. 34.
    Fan, X., et al.: Integrated planning and control of large tracked vehicles in open terrain. In: 2010 IEEE international conference on robotics and automation, pp. 4424–4430 (2010)Google Scholar
  35. 35.
    Kelly, A., Stentz, A.: Rough terrain autonomous mobility part 2?: an active vision , predictive control approach. Auton. Robots 5, 163–198 (1998)CrossRefGoogle Scholar
  36. 36.
    Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)CrossRefGoogle Scholar
  37. 37.
    Howard, A., Werger, B., Seraji, H.: Integrating terrain maps into a reactive navigation strategy. In: 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), vol. 2, pp. 2012–2017 (2003)Google Scholar
  38. 38.
    Cherif, M., Laugier, C.: Using physical models to plan safe and executable motions for a rover moving on a terrain. In: Int. Workshop on Intelligent Robotic Systems, pp. 57–66 (1993)Google Scholar
  39. 39.
    Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain. In: Springer tracts in advanced robotics, vol. 12, p. XII, 111, no. 8, Springer, Berlin (2004)Google Scholar
  40. 40.
    Brunner, M., Bruggemann, B., Schulz, D.: Hierarchical rough terrain motion planning using an optimal sampling-based method. In: Proc. - IEEE Int. Conf. Robot. Autom., pp. 5539–5544 (2013)Google Scholar
  41. 41.
    Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driving using RRT. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp. 1681–1686 (2008)Google Scholar
  42. 42.
    Pepy, R., lambert, A., Mounier, H.: Path planning using a dynamic vehicle model. 2006 2nd International Conference on Information &, Communication Tsechnologies 1(1), 781–786 (2006)CrossRefGoogle Scholar
  43. 43.
    LaValle, S.M., jr.J.J.K: Randomized kinodynamic planning. I. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  44. 44.
    Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.: Real-Time Motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–1118 (2009)CrossRefGoogle Scholar
  45. 45.
    Webb, D.J., van den Berg, J.: Kinodynamic RRT*: optimal motion planning for systems with linear differential constraints. CoRR, vol. abs/1205.5 (2012)Google Scholar
  46. 46.
    Koenig, S., Likhachev, M.. In: Proc. Eighteenth Natl. Conf. Artif. Intell., pp. 476–483 (2002)Google Scholar
  47. 47.
    (Tony) Stentz, A.: The Focussed d* algorithm for Real-Time replanning. In: Proceedings of the international joint conference on artificial intelligence (1995)Google Scholar
  48. 48.
    Haug, E.J.: Computer aided kinematics and dynamics of mechanical systems. Allyn & Bacon Inc., Needham (1989)Google Scholar
  49. 49.
    Ladd, A.M.: Motion planning for physical simulation. Rice University (2006)Google Scholar
  50. 50.
    Coutinho, M.G.: Guide to dynamic simulations of rigid bodies and particle systems london. Springer, London (2013)CrossRefzbMATHGoogle Scholar
  51. 51.
    Roennau, A., Sutter, F., Heppner, G., Oberlaender, J., Dillmann, R.: Evaluation of physics engines for robotic simulations with a special focus on the dynamics of walking robots. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–7 (2013)Google Scholar
  52. 52.
    Bullet Physics Engine Ver. 2.87. [Online]. Available: http://bulletphysics.org/wordpress/. [Accessed: 11-Feb-2017]
  53. 53.
    Egerstedt, M., Johansson, K., Lygeros, J., Sastry, S.: Behavior based robotics using regularized hybrid automata. In: Proceedings of the 38th IEEE conference on decision and control (Cat. No.99CH36304), vol. 4, pp. 3400–3405 (1999)Google Scholar
  54. 54.
    Egerstedt, M.: Controls for the masses [Focus on education]. IEEE Control Syst. 33(4), 40–44 (2013)CrossRefGoogle Scholar
  55. 55.
    Cheng, P.C.P., LaValle, S.M.: Reducing metric sensitivity in randomized trajectory design. Proc. 2001 IEEE/RSJ Int. Conf. Intell. Robot. Syst. Expand. Soc. Role Robot. Next Millenn. (Cat. No.01CH37180) 1, 43–48 (2001)Google Scholar
  56. 56.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Rob. Res. 30 (7), 846–894 (2011)CrossRefzbMATHGoogle Scholar
  57. 57.
    Coppelia Robotics, V-REP. [Online]. Available: http://www.coppeliarobotics.com/. [Accessed: 11-Feb-2017]
  58. 58.
    Hazevoet, J., Anders, M., Huish, I.: ANT Landscape Extension for Blender 2.6. [Online]. Available: https://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/AddMesh/ANTLandscape. [Accessed: 01-Jan-2017]
  59. 59.
    Blender v2.6. [Online]. Available: https://www.blender.org/. [Accessed: 01-Jan-2017]
  60. 60.
    Kumar, A., Ben-Tzvi, P.: Spatial object tracking system based on linear optical sensor arrays. IEEE Sens. J 16(22), 7933–7940 (2016)CrossRefGoogle Scholar
  61. 61.
    Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Rob. Res. 21(3), 233–255 (2002)CrossRefzbMATHGoogle Scholar
  62. 62.
    Tang, S.H., Kamil, F., Khaksar, W., Zulkifli, N., Ahmad, S.: Robotic motion planning in unknown dynamic environments: existing approaches and challenges. In: 2015 IEEE Int. Symp. Robot. Int.ll. Sensors, pp. 288–294 (2015)Google Scholar
  63. 63.
    POZYX positioning system. [Online]. Available: https://www.pozyx.io/. [Accessed: 01-Jan-2017]

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Robotics and Mechatronics LabMechanical Engineering Department, Virginia TechBlacksburgUSA

Personalised recommendations