Advertisement

Journal of Intelligent & Robotic Systems

, Volume 93, Issue 1–2, pp 245–260 | Cite as

Multi-UAV Carrier Phase Differential GPS and Vision-based Sensing for High Accuracy Attitude Estimation

  • Amedeo Rodi Vetrella
  • Flavia CausaEmail author
  • Alfredo Renga
  • Giancarmine Fasano
  • Domenico Accardo
  • Michele Grassi
Article
  • 108 Downloads

Abstract

This paper presents a cooperative navigation technique which exploits relative vision-based sensing and carrier-phase differential GPS (CDGPS) among antennas embarked on different flying platforms, to provide accurate UAV attitude estimates in real time or in post-processing phase. It is assumed that all UAVs are under nominal GPS coverage. The logical architecture and the main algorithmic steps are highlighted, and the adopted CDGPS processing strategy is described. The experimental setup used to evaluate the proposed approach comprises two multi-rotors and two ground antennas, one of which is used as a benchmark for attitude accuracy estimation. Results from flight tests are presented in which the attitude solution obtained by integrating CDGPS and vision (CDGPS/Vision) measurements within and Extended Kalman Filter is compared with estimates provided by the onboard navigation system and with the results of a formerly developed code-based differential GPS (DGPS/Vision) approach. Benchmark-based analyses confirm that CDGPS/Vision approach outperforms both onboard navigation system and DGPS/Vision approach.

Keywords

Attitude estimation CDGPS Vision-based tracking Cooperation UAV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was carried out in the frame of Programme STAR, financially supported by UniNA and Compagnia di San Paolo. The authors thank Dr. Roberto Opromolla for support during experimental tests.

References

  1. 1.
    Eling, C., Wieland, M., Hess, C., Klingbeil, L., Kuhlmann, H.: Development and evaluation of UAV based mapping system for remote sensing and surveying application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1/W4, 233–239 (2015).  https://doi.org/10.5194/isprsarchives-XL-1-W4-233-2015 CrossRefGoogle Scholar
  2. 2.
    Eling, C., Klingbeil, L., Kuhlmann, H.: Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs. Sensors 15, 26212–26235 (2015).  https://doi.org/10.3390/s151026212 CrossRefGoogle Scholar
  3. 3.
    Jozkow, G., Toth, C., Grejner-Brzezinska, D.: UAS topographic mapping with velodine LiDAR sensor. ISPRS. Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III-1, 201–208 (2016).  https://doi.org/10.5194/isprs-annals-III-1-201-2016 Google Scholar
  4. 4.
    Rehak, M., Skaloud, J.: Applicability of new approaches of sensor orientation to micro aerial vehicles. XXIII ISPRS Congr. Prague, Czech Repub. III-3, 441–447 (2016)Google Scholar
  5. 5.
    Swift Navigation Piksi GNSS modules, https://www.swiftnav.com/piksi-gnss-modules
  6. 6.
    Rehak, M., Skaloud, J.: Performance assessment of integrated sensor orientation with a low-cost GNSS receiver. In: International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, pp. 1–6. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2017)Google Scholar
  7. 7.
    Parkins, A.: Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut 15, 391–402 (2011).  https://doi.org/10.1007/s10291-010-0198-0 CrossRefGoogle Scholar
  8. 8.
    Hu, G., Abbey, D.A., Castleden, N., Featherstone, W.E., Earls, C., Ovstedal, O., Weihing, D.: An approach for instantaneous ambiguity resolution for medium- to long-range multiple reference station networks. GPS Solut 9, 1–11 (2005).  https://doi.org/10.1007/s10291-004-0120-8 CrossRefGoogle Scholar
  9. 9.
    Stoecker, C., Nex, F., Koeva, M., Gerke, M.: Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. In: International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, pp. 1–7. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2017)Google Scholar
  10. 10.
    Vetrella, A., Fasano, G., Accardo, D., Moccia, A.: Differential GNSS and vision-based tracking to improve navigation performance in cooperative multi-UAV systems. Sensors 16, 2164 (2016).  https://doi.org/10.3390/s16122164 CrossRefGoogle Scholar
  11. 11.
    Vetrella, A.R., Fasano, G., Accardo, D.: Satellite and vision-aided sensor fusion for cooperative navigation of unmanned aircraft swarms. J. Aerosp. Inf. Syst. 14, 327–344 (2017).  https://doi.org/10.2514/1.I010474 Google Scholar
  12. 12.
    Vetrella, A.R., Fasano, G., Accardo, D.: Cooperative attitude estimation for UAV swarms based on tight integration of GNSS and vision measurements. Submitt. to IEEE Trans. RobotGoogle Scholar
  13. 13.
    Shuster, M.D., Oh, S.D.: Three-axis attitude determination from vector observations. J. Guid. Control. Dyn. 4, 70–77 (1981).  https://doi.org/10.2514/3.19717 CrossRefzbMATHGoogle Scholar
  14. 14.
    Cheng, Y., Shuster, M.D.: QUEST and the anti-QUEST?: good and evil attitude estimation. J. Astronaut. Sci. 53, 337–351 (2005)Google Scholar
  15. 15.
    Vetrella, A.R., Causa, F., Renga, A., Fasano, G., Accardo, D., Grassi, M.: Flight demonstration of multi-UAV CDGPS and vision-based sensing for high accuracy attitude estimation. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 237–246. IEEE (2017)Google Scholar
  16. 16.
    Farrell, J.: Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc., New York (2008)Google Scholar
  17. 17.
    Rehak, M., Skaloud, J.: Time synchronization of consumer cameras on micro aerial vehicles. ISPRS J. Photogramm. Remote Sens. 123, 114–123 (2017).  https://doi.org/10.1016/j.isprsjprs.2016.11.009 CrossRefGoogle Scholar
  18. 18.
    Renga, A., Fasano, G., Accardo, D., Grassi, M., Tancredi, U., Rufino, G., Simonetti, A.: Navigation facility for high accuracy offline trajectory and attitude estimation in airborne applications. Int. J. Navig. Obs. 2013, 1–13 (2013).  https://doi.org/10.1155/2013/397686 Google Scholar
  19. 19.
    Montenbruck, O., Wermuth, M., Kahle, R., Zentrum, D., Dlr, R.: GPS based relative navigation for the TanDEM-X mission - first flight results. Earth 58, 2797–2807 (2011).  https://doi.org/10.1002/j.2161-4296.2011.tb02587.x Google Scholar
  20. 20.
    Tancredi, U., Renga, A., Grassi, M.: Real-time relative positioning of spacecraft over long baselines. J. Guid. Control. Dyn. 37, 47–58 (2014).  https://doi.org/10.2514/1.61950 CrossRefGoogle Scholar
  21. 21.
    Teunissen, P.J.G.: The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geod. 70, 65–82 (1995).  https://doi.org/10.1007/BF00863419 CrossRefGoogle Scholar
  22. 22.
    Verhagen, S.: Integer ambiguity validation: an open problem? GPS Solut. 8, 36–43 (2004).  https://doi.org/10.1007/s10291-004-0087-5 CrossRefGoogle Scholar
  23. 23.
    Melbourne, W.G.: The case for ranging in GPS-based geodetic systems. In: 1st International Symposium on Precise Positioning with the Global Positioning System, pp. 373–386. Rockville (1985)Google Scholar
  24. 24.
    Wübbena, G.: Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: 1st International Symposium on Precise Positioning with the Global Positioning System, pp. 403–412. Rockville (1985)Google Scholar
  25. 25.
    Verhagen, S., Bofeng, L.: LAMBDA Software Package. Matlab Implementation. Version 3, 0 (2012)Google Scholar
  26. 26.
    Verhagen, S.: The GNSS integer ambiguities: estimation and validation. J. Geod. (2005)Google Scholar
  27. 27.
    Wang, J., Feng, Y.: Reliability of partial ambiguity fixing with multiple GNSS constellations. J. Geod. 87, 1–14 (2013).  https://doi.org/10.1007/s00190-012-0573-4 CrossRefGoogle Scholar
  28. 28.
    Li, P., Zhang, X.: Precise point positioning with partial ambiguity fixing. Sensors 15, 13627–13643 (2015).  https://doi.org/10.3390/s150613627 CrossRefGoogle Scholar
  29. 29.
    Groves, P.D.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House, Noordwood (2008)zbMATHGoogle Scholar
  30. 30.
    Yuanwei, W., Yao, S., Guanghui, W.: Vision-based real-time aerial object localization and tracking for UAV sensing System (2017)Google Scholar
  31. 31.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 142–149 (2000)Google Scholar
  32. 32.
    Collins, R.T., Liu, Y., Leordeanu M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1631–1643 (2005).  https://doi.org/10.1109/TPAMI.2005.205 CrossRefGoogle Scholar
  33. 33.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. In: International Journal of Computer Vision, Technical Report CMU-CS-91-132, pp. 1–20 (1991)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of Naples “Federico II”NaplesItaly

Personalised recommendations