Advertisement

Journal of Intelligent & Robotic Systems

, Volume 93, Issue 1–2, pp 303–316 | Cite as

Distributed UAV Loss Detection and Auto-replacement Protocol with Guaranteed Properties

  • Sunan HuangEmail author
  • Rodney Swee Huat Teo
  • Jennifer Lai Pheng Kwan
  • Wenqi Liu
  • Siarhei Michailovich Dymkou
Article
  • 78 Downloads

Abstract

Multi-UAV systems are becoming a true reality. They have wide applications in surveillance, search, hazardous rescue and other civil services. Currently, an important challenge is the robust control against UAV failures. In this paper, the distributed UAV loss detection and auto-replacement scheme is discussed. The basic idea is to use the cooperative method to control the multi-UAV system to accomplish the missions. This is achieved by exchanging heartbeats (HBs) and information fusion. We first use the obtained information to detect if one UAV is lost. Subsequently, an auto-replacement logic is used to send a UAV with low priority to occupy the target position or task which was assigned to the lost UAV. Next, a recovery algorithm is proposed when a newly inserted UAV or a lost UAV is recovered from failures. Finally, the proposed scheme is tested by computer simulations and real experiments.

Keywords

Cooperative control Distributed control Unmanned aerial vehicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Huang, S., Teo, R.S.H., Liu, W., Dymkou, S.M.: Agent model for multi-UAV control via protocol designs. Int. J. Intell. Comput. Cybern. 10(4), 412–429 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhang, G., Shang, B., Chen, Y.Q., Moyes, H.: SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists. In: International Conference on Unmanned Aircraft Systems (ICUAS), Miami. IEEE, pp. 1052–1057 (2017)Google Scholar
  3. 3.
    Smith, B.J., John, G., Christensen, L.E., Chen, Y.Q.: Fugitive methane leak detection using sUAS and miniature laser spectrometer payload: system, application and groundtruthing tests. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, pp. 369–374. IEEE (2017)Google Scholar
  4. 4.
    Parapari, H.F., Abdollahi, F., Menhaj, M.B.: Distributed coverage control for mobile robots with limited-range sector sensors. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Abberta, Canada July 12–15, pp. 1079–1085 (2016)Google Scholar
  5. 5.
    Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration in non-Euclidean metric spaces. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. 245–262, Berlin (2013)Google Scholar
  6. 6.
    Bullo, F., Carli, R., Frasca, P.: Gossip coverage control for robotic networks: dynamical systems on the space of partitions. SIAM J. Control. Optim. 50(1), 419–447 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daingade, S., Sinha, A., Borkar, A., Arya, H.: Multi UAV formation control for target monitoring. In: 2015 Indian Control Conference Indian Institute of Technology Madras, Chennai, pp. 25–30 (2015)Google Scholar
  8. 8.
    Smith, S.L., Broucke, M.E.: Francis, B.A.: Stabilizing a multi-agent system to an equilibrium polygon formation, in Proc. In: 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 2415–2424 (2006)Google Scholar
  9. 9.
    Ollero, A., Maza, I. (eds.): Multiple heterogeneous unmanned aerial vehicles. Springer Tracts on Advanced Robotics. Springer, Berlin (2007)Google Scholar
  10. 10.
    Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jha, A.R.: Theory, Design, and Applications of Unmanned Aerial Vehicles. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  12. 12.
    Drozeski, G., Saha, B., Vachtsevanos, G.: A fault detection and reconfigurable control architecture for unmanned aerial vehicles. In: Proceedings of the IEEE Aerospace Conference, Big-Sky, MT, USA, March 5–12 (2005)Google Scholar
  13. 13.
    Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18, 90–99 (2008)CrossRefGoogle Scholar
  14. 14.
    Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., Sanahuja, G.: Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor. In: IEEE International Conference on Robotics and Automation (ICRA 2015), Seattle, Washington, pp. 5266–5271 (2015)Google Scholar
  15. 15.
    Caliskan, F., Hajiyev, C.: Active fault-tolerant control of UAV dynamics against sensor-actuator failures. J. Aerosp. Eng. 29(4). (Online publication) (2016)Google Scholar
  16. 16.
    Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC, techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Daigle, M. J., Koutsoukos, X. D., Biswas, G.: Distributed diagnosis in formations of mobile robots. IEEE Trans. Robot. 23(2), 353–369 (2007)CrossRefGoogle Scholar
  18. 18.
    Lchevin, N., Rabbath, C. A.: Decentralized detection of a class of non-abrupt faults with application to formations of unmanned airships. IEEE Trans. Control Syst. Technol. 17(2), 484–493 (2009)CrossRefGoogle Scholar
  19. 19.
    Shames, I., Teixeira, A. M., Sandberg, H., Johansson, K. H.: Distributed fault detection for interconnected secondorder systems. Automatica 47(12), 2757–2764 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Arrichiello, F., Marino, A., Pierri, F.: Observer-based decentralized fault detection and isolation strategy for networked multirobot systems. IEEE Trans. Control Syst. Technol. 23(4), 1465–1476 (2015)CrossRefGoogle Scholar
  21. 21.
    Qian, M., Jiang, B., Xu, D.: Fault tolerant control scheme design for the formation control system of unmanned aerial vehicles. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 227(8), 626–634 (2013)Google Scholar
  22. 22.
    Ghamry, K.A., Zhang, Y.: Fault-tolerant cooperative control of multiple UAVs for forest fire detection and tracking Mission. In: Proceedings of 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol) Barcelona, Spain, Sept 7–9, pp. 133–138 (2016)Google Scholar
  23. 23.
    Kamel, M.A., Yu, X., Zhang, Y.: Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Trans. Control Syst. Technol. 26(2), 756–764 (2018)CrossRefGoogle Scholar
  24. 24.
    Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), inertial and vision sensors. Sensors 9, 7566–7579 (2009)CrossRefGoogle Scholar
  25. 25.
    Bellingham, J.S., Tillerson, M., Alighanbari, M., How, J.P.: Cooperative path planning for multiple UAVs in dynamic and uncertain environments. In: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, vol. 3, pp. 2816–2822 (2002)Google Scholar
  26. 26.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  2. 2.DSO National LaboratoriesSingaporeSingapore

Personalised recommendations