Advertisement

Journal of Intelligent & Robotic Systems

, Volume 94, Issue 2, pp 303–325 | Cite as

Design and Kinematic Analysis of the Novel Almost Spherical Parallel Mechanism Active Ankle

  • Shivesh KumarEmail author
  • Bertold Bongardt
  • Marc Simnofske
  • Frank Kirchner
Article

Abstract

The novel mechanism Active Ankle features three degrees of freedom that operate in an almost spherical manner. In comparison to spherical devices, its design offers advantages such as high stiffness, a simple and robust construction, and a good stress distribution. In the present paper, a comprehensive study of the design, analysis, and control of the Active Ankle in its almost-spherical work modality is provided. In particular, the kinematic analysis of the mechanism is conducted, solving the full inverse, the rotative inverse, and the forward kinematic problems. In addition, the manipulator’s workspace is characterized and the kinematic control, that has been implemented on a prototype of Active Ankle, is presented together with experimental results that demonstrate the employability as an ankle joint in a full body exoskeleton.

Keywords

Parallel robots Kinematics Mechanism design of manipulators Prosthetics and exoskeletons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work presented in this paper was performed within the project Recupera-Reha, funded by the German Aero-space Center (DLR) with federal funds from the Federal Ministry of Education and Research (BMBF) (Grant 01-IM-14006A).

References

  1. 1.
    Al-Widyan, K., Ma, X.Q., Angeles, J.: The robust design of parallel spherical robots. Mech. Mach. Theory 46(3), 335–343 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bargsten, V., de Gea Fernandez, J.: Compi: development of a 6-DOF compliant robot arm for human-robot cooperation. In: Proceedings of the 8th International Workshop on Human-Friendly Robotics. TU München (2015)Google Scholar
  3. 3.
    Baron, L.: A joint-limits avoidance strategy for arc-welding robots. In: Integrated Design and Manufacturing in Mechanical Engineering (2000)Google Scholar
  4. 4.
    Bohigas, O., Manubens, M., Ros, L.: Singularities of non-redundant manipulators: a short account and a method for their computation in the planar case. Mech. Mach. Theory 68, 1–17 (2013)CrossRefGoogle Scholar
  5. 5.
    Bongardt, B.: Geometric characterization of the workspace of non- orthogonal rotation axes. J. Geom. Mech. 6(2), 141–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bongardt, B.: Inverse kinematics of anthropomorphic arms yielding eight coincidingcircles. In: International Workshop on Computational Kinematics (2017)Google Scholar
  7. 7.
    Brinker, J., Corves, B.: A survey on parallel robots with delta-like architecture. In: IFToMM World Congress (2015)Google Scholar
  8. 8.
    Briot, S., Pashkevich, A., Chablat, D.: On the optimal design of parallel robots taking into account their deformations and natural frequencies. In: 33rd Mechanisms and Robotics Conference, Parts A and B, vol. 7, pp 367–376 (2009).  https://doi.org/10.1115/DETC2009-86230
  9. 9.
    Clavel, R.: Conception d’un robot parallèle rapide à 4 degrés de liberté, p 146. EPFL, Lausanne (1991)Google Scholar
  10. 10.
    Davidson, J.K., Hunt, K.H.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press. ISBN: 9780198562450 (2004)Google Scholar
  11. 11.
    Featherstone, R: Rigid Body Dynamics Algorithms. Springer-Verlag New York, Inc., Secaucus, USA. ISBN: 0387743146 (2007)Google Scholar
  12. 12.
    Frindt, M.: Modulbasierte Synthese von Parallelstrukturen für Maschinen in der Produktionstechnik. PhD thesis, Technical University of Braunschweig (2001)Google Scholar
  13. 13.
    Gallardo-Alvarado, J: Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory, 1 edn. Springer International Publishing, Cham. ISBN: 978-3-319-31124-1 (2016).  https://doi.org/10.1007/978-3-319-31126-5
  14. 14.
    Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V.: A brief review on upper extremity robotic exoskeleton systems. In: 2011 6th International Conference on Industrial and Information Systems, pp 346–351 (2011).  https://doi.org/10.1109/ICIINFS.2011.6038092
  15. 15.
    Gosselin, C., St-Pierre, E., Gagne, M.: On the development of the Agile Eye. IEEE Robot. Autom. Mag. 3(4), 29–37 (1996).  https://doi.org/10.1109/100.556480 CrossRefGoogle Scholar
  16. 16.
    Herr, H.: Exoskeletons and orthoses: classification, design challenges and future directions. J. NeuroEng. Rehabil. 6(1), 21 (2009)CrossRefGoogle Scholar
  17. 17.
    Huang, J., Tu, X., He, J.: Design and evaluation of the rupert wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 926–935 (2016).  https://doi.org/10.1109/TSMC.2015.2497205 CrossRefGoogle Scholar
  18. 18.
    Joyeux, S., Albiez, J.: Robot development: from components to systems. In: 6th National Conference on Control Architectures of Robots. Grenoble, France (2011)Google Scholar
  19. 19.
    Kempe, A.B.: How to Draw a Straight Line (1877)Google Scholar
  20. 20.
    Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Taylor and Francis, New York (2002)zbMATHGoogle Scholar
  21. 21.
    Khalil, W., Dombre, E.: In: Khalil, W., Dombre, E. (eds.) Modeling, Identification and Control of Robots, 3rd edn., pp. 57–84. Butterworth-Heinemann, Oxford. ISBN: 978-1-903996-66-9 (2002).  https://doi.org/10.1016/B978-190399666-9/50004-X, https://www.sciencedirect.com/science/article/pii/B978190399666950004X
  22. 22.
    Kirchner, E.A., Will, N., Simnofske, M., Vaca Benitez, L.M., Bongardt, B., Krell, M.M., Kumar, S., Mallwitz, M., Seeland, A., Tabie, M., Woehrle, H., Yueksel, M., Hess, A., Buschfort, R., Kirchner, F.: Recupera-reha: Exoskeleton technology with integrated biosignal analysis for sensorimotor rehabilitation. In: Transdisziplinaere Konferenz SmartASSIST, pp 504–517 (2016)Google Scholar
  23. 23.
    Kong, X., Gosselin, C.M.: Type Synthesis of Parallel Mechanisms. Springer, Berlin. ISBN: 978-3-540-71989-2 (2007).  https://doi.org/10.1007/978-3-540-71990-8
  24. 24.
    Kumar, S., Nayak, A., Bongardt, B., Mueller, A., Kirchner, F.: Kinematic analysis of active ankle using computational algebraic geometry. In: Zeghloul, S., Romdhane, L., Laribi, M. A. (eds.) Computational Kinematics, pp 117–125. Springer International Publishing, Cham (2018)Google Scholar
  25. 25.
    Kumar, S., Simnofske, M., Bongardt, B., Müller, A., Kirchner, F.: Integrating mimic joints into dynamics algorithms: exemplified by the hybrid recupera exoskeleton. In: Proceedings of the Advances in Robotics, AIR ’17, pp 27:1–27:6. ACM, New York, NY, USA. ISBN: 978-1-4503-5294-9 (2017).  https://doi.org/10.1145/3132446.3134891
  26. 26.
    Li, W., Gao, F., Zhang, J.: A three-DOF translational manipulator with decoupled geometry. Robotica 23(6), 805–808 (2005).  https://doi.org/10.1017/S0263574705001700 CrossRefGoogle Scholar
  27. 27.
    Luzi, L., Sancisi, N., Parenti Castelli, V.: A new direct position analysis solution for an over-constrained gough-stewart platform. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics, pp. 585–592. Springer International Publishing, Cham. ISBN: 978-3-319-60867-9 (2017)Google Scholar
  28. 28.
    Merlet, J.-P.: Parallel manipulators: state of the art and perspectives. In: Takamori, T., Tsuchiya, K. (eds.) Robotics, Mechatronics and Manufacturing Systems, pp. 21–26. Elsevier, Amsterdam. ISBN: 978-0-444-89700-8 (1993).  https://doi.org/10.1016/B978-0-444-89700-8.50007-5, https://www.sciencedirect.com/science/article/pii/B9780444897008500075.
  29. 29.
    Merlet, J.-P.: Determination of the orientation workspace of parallel manipulators. J. Intell. Robot. Syst. 13 (2), 143–160 (1995)CrossRefGoogle Scholar
  30. 30.
    Nef, T., Guidali, M., Klamroth-Marganska, V., Riener, R.: ARMin - exoskeleton robot for stroke rehabilitation. In: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, pp. 127–130. Springer, Berlin. ISBN: 978-3-642-03889-1 (2009)Google Scholar
  31. 31.
    Niyetkaliyev, A., Shintemirov, A.: An approach for obtaining unique kinematic solutions of a spherical parallel manipulator. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 1355–1360 (2014)Google Scholar
  32. 32.
    Sawicki, G.S., Ferris, D.P.: A pneumatically powered knee-ankle-foot orthosis (kafo) with myoelectric activation and inhibition. J. NeuroEng. Rehabil. 6(1), 23 (2009)CrossRefGoogle Scholar
  33. 33.
    Selig, J.M., Li, H.: A geometric newton-raphson method for gough-stewart platforms. In: Kecskeméthy, A., Müller, A. (eds.) Computational Kinematics, pp. 183–190. Springer, Berlin. ISBN: 978-3-642-01947-0 (2009)Google Scholar
  34. 34.
    Simnofske, M.: Ausrichtungsvorrichtung zum Ausrichten einer Plattform in drei rotatorischen Freiheiten (2015)Google Scholar
  35. 35.
    Simnofske, M., Kumar, S., Bongardt, B., Kirchner, F.: Active ankle—an almost-spherical parallel mechanism. In: 47th International Symposium on Robotics (ISR) (2016)Google Scholar
  36. 36.
    Stauffer, R.N., Chao, E.Y.S., Brewster, R.C.: Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin. Orthop. Relat. Res. 127(127), 189–196 (1977)Google Scholar
  37. 37.
    Temple, R.K.G.: The cardan suspension. In: The UNESCO Courier (1988)Google Scholar
  38. 38.
    Thomas, F., Ros, L.: Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005)CrossRefGoogle Scholar
  39. 39.
    Valasek, M., Zicha, J., Karasek, M., Hudec, R.: Hexasphere – redundantly actuated parallel spherical mechanism as a new concept of agile telescope. Advances in Astronomy (2010).  https://doi.org/10.1155/2010/348286
  40. 40.
    Villgrattner, T., Schneider, E., Andersch, P., Ulbrich, H.: Compact high dynamic 3 DOF camera orientation system: development and control. J. Syst. Des. Dyn. 5(5), 819–828 (2011)Google Scholar
  41. 41.
    Vischer, P., Clavel, R.: Argos: a novel 3-DOF parallel wrist mechanism. Int. J. Robot. Res. 19(1), 5–11 (2000).  https://doi.org/10.1177/02783640022066707 CrossRefGoogle Scholar
  42. 42.
    Wildberger, N.J.: A rational approach to trigonometry. Math Horizons 15(2), 16–20 (2007). http://www.jstor.org/stable/25678720 CrossRefGoogle Scholar
  43. 43.
    Wu, G.: Kinematic analysis and optimal design of a wall-mounted four-limb parallel schoenflies-motion robot for pick-and-place operations. J. Intell. Robot. Syst. 85(3), 663–677 (2016).  https://doi.org/10.1007/s10846-016-0377-5 Google Scholar
  44. 44.
    Wu, G., Caro, S., Wang, J.: Design and transmission analysis of an asymmetrical spherical parallel manipulator. Mech. Mach. Theory 94, 119–131 (2015)CrossRefGoogle Scholar
  45. 45.
    Yamamoto, S., Hagiwara, A., Mizobe, T., Yokoyama, O., Yasui, T.: Development of an ankle–foot orthosis with an oil damper. Prosthet. Orthot. Int. 29(3), 209–219 (2005)CrossRefGoogle Scholar
  46. 46.
    Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006).  https://doi.org/10.1109/TMECH.2006.871087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Robotics Innovation Center (RIC)German Research Center for Artificial Intelligence (DFKI)BremenGermany
  2. 2.Institute of Robotics and Process Control (IRP)Technical University of BraunschweigBraunschweigGermany
  3. 3.Fachbereich Mathematik und Informatik, Arbeitsgruppe RobotikUniversity of BremenBremenGermany

Personalised recommendations