Advertisement

Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot

  • Edin KocoEmail author
  • Damir Mirkovic
  • Zdenko Kovačić
Article

Abstract

This paper presents a new hybrid compliance control system for a electrically powered quadruped robot leg composing both of active and variable passive compliance parts. The presented control system decouples the effects of each compliance type in a manner beneficial for the overall dynamics of the robot leg system. We investigate and demonstrate how the proposed hybrid compliance control of a mechanically stiff quadruped robot leg canimprove the performance of locomotion under moderate external disturbances. The observed robotic system integrates high gear ratio DC motors making the whole mechanism stiff and inconvenient for use when subjected to unknown disturbances, making this system a perfect candidate to implement compliance control. The variable passive compliance ensures the filtering of sudden impacts during locomotion while the active compliance allows lower bandwidth compliance control for locomotion purposes. Control system ensures that the joint effect of the active and variable passive compliance is fully controllable both in higher and lower frequency range. Mathematical modeling and simulation analysis is conducted in order to identify the performance of the proposed system. Finally, the system is experimentally validated from the single leg and quadruped robot perspective.

Keywords

Quadruped robot Active compliance Variable passive compliance Hybrid compliance control Virtual springs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MP4 25.5 MB)

References

  1. 1.
    Rutishauser, S., Sprowitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using central pattern generators for locomotion control. In: 2008 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 710–715 (2008)Google Scholar
  2. 2.
    Sprowitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 932–950 (2013)CrossRefGoogle Scholar
  3. 3.
    Ferris, D.P., Louie, M., Farley, C.T.: Running in the real world: adjusting leg stiffness for different surfaces. Proceedings. Biological sciences / The Royal Society 265(1400), 989–94 (1998)CrossRefGoogle Scholar
  4. 4.
    Ugurlu, B., Kotaka, K., Narikiyo, T.: Actively-compliant locomotion control on rough terrain: cyclic jumping and trotting experiments on a stiff-by-nature quadruped. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3313–3320 (2013)Google Scholar
  5. 5.
    Mutka, A., Koco, E., Kovacic, Z.: Adaptive control of quadruped locomotion through variable compliance of revolute spiral feet. Int. J. Adv. Robot. Syst. 11(10), 1 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhou, D., Low, K.H.: Combined use of ground learning model and active compliance to the motion control of walking robotic legs. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 3, pp. 3159–3164 (2001)Google Scholar
  7. 7.
    Remy, C.D., Siegwart, R., Gehring, C., Bloesch, M., Hoepflinger, M.A., Hutter, M.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: 15th International Conference on Climbing and Walking Robot - CLAWAR 2012, pp. 1–8 (2012)Google Scholar
  8. 8.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quaduped robot. Control, IFAC Proceedings 41(2), 10822–10825 (2008)Google Scholar
  9. 9.
    Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering 225(6), 831–849 (2011)CrossRefGoogle Scholar
  10. 10.
    Winkler, A., Havoutis, I., Bazeille, S., Ortiz, J., Focchi, M., Dillmann, R., Caldwell, D., Semini, C.: Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 6476–6482 (2014)Google Scholar
  11. 11.
    Semini, C., Buchli, J., Caldwell, D.G.: Quadrupedal trotting with active compliance. In: IEEE International Conference on Mechatronics (ICM), pp. 610–616 (2013)Google Scholar
  12. 12.
    Hutter, M., Gehring, C., Hoepflinger, M., Bloesch, M., Siegwart, R.: Towards combining speed, efficiency, versatility and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2014)CrossRefGoogle Scholar
  13. 13.
    Paine, N., Oh, S., Sentis, L.: Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014)CrossRefGoogle Scholar
  14. 14.
    Machairas, K., Papadopoulos, E.: An active compliance controller for quadruped trotting. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 743–748, Athens, Greece (2016)Google Scholar
  15. 15.
    Ugurlu, B., Havoutis, I., Semini, C., Caldwell, D.G.: Dynamic trot-walking with the hydraulic quadruped robot - hyq: analytical trajectory generation and active compliance control. In: Proceedings - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6044–6051 (2013)Google Scholar
  16. 16.
    Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28(1), 90–103 (2009)CrossRefGoogle Scholar
  17. 17.
    Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ‘04. 2004, vol. 5, pp. 1–6 (2004)Google Scholar
  18. 18.
    Koco, E., Mutka, A., Kovacic, Z.: New variable passive-compliant element design for quadruped adaptation to stiffness-varying terrain. Int. J. Adv. Robot. Syst. 13(3), 1–17 (2016)Google Scholar
  19. 19.
    Galloway, K.C.: Passive Variable Compliance for Dynamic Legged Robots. ProQuest Dissertations and Theses, 3447626:159 (2010)Google Scholar
  20. 20.
    Hollander, K.W., Sugar, T.G., Herring, D.E.: Adjustable robotic tendon using a ‘jack spring’. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, vol. 2005, pp. 113–118 (2005)Google Scholar
  21. 21.
    Galloway, K.C., Clark, J.E., Koditschek, D.E.: Design of a multi-directional variable stiffness leg for dynamic running. In: Mechanics of Solids and Structures, Parts A and B, vol. 10, pp. 73–80 (2007)Google Scholar
  22. 22.
    Galloway, K.C., Clark, J.E., Koditschek, D.E.: Design of a tunable stiffness composite leg for dynamic locomotion. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2009, pp. 215–222 (2009)Google Scholar
  23. 23.
    Talebi, S., Poulakakis, I., Papadopoulos, E., Buehler, M.: Quadruped robot running with a bounding gait. In: 7th International Symposium on Experimental Robotics, September 2005, pp. 1–8 (2000)Google Scholar
  24. 24.
    ATI: F/T Transducer installation and operation manual. ATI Industrial Automation (2016)Google Scholar
  25. 25.
    Nikonovas, A., Harrison, A.J.L., Hoult, S., Sammut, D.: The application of force-sensing resistor sensors for measuring forces developed by the human hand. Proc. Inst. Mech. Eng. H J. Eng. Med. 218, 121–126 (2004)CrossRefGoogle Scholar
  26. 26.
    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2828–2833 (2010)Google Scholar
  27. 27.
    Kuehn, D., Grimminger, F., Beinersdorf, F., Bernhard, F., Burchardt, A., Schilling, M., Simnofske, M., Stark, T., Zenzes, M., Kirchner, F.: Additional DOFs and sensors for bio-inspired locomotion: towards active spine, ankle joints, and feet for a quadruped robot. In: 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, pp. 2780–2786 (2011)Google Scholar
  28. 28.
    Hutter, M.: StarlETH & Co-design and control of legged robots with compliant actuation. ETH Zurich, PhD Thesis (21073) (2013)Google Scholar
  29. 29.
    Chuah, M.Y., Kim, S.: Enabling force sensing during ground locomotion: a bio-inspired, multi-axis, composite force sensor using discrete pressure mapping. IEEE Sensors J. 14(5), 1693–1703 (2014)CrossRefGoogle Scholar
  30. 30.
    Optoforce: 3D force sensor OMD-20-SA-60n technical datesheet. Optoforce ltd. (2014)Google Scholar
  31. 31.
    Neunert, M., Boaventura, T., Buchli, J.: Why off-the-shelf physics simulators fail in evaluating feedback controller performance - a case study for quadrupedal robots. In: Proceedings - 19th International Conference on Climbing and Walking Robots (CLAWAR), pp. 1–8 (2016)Google Scholar
  32. 32.
    Vasilopoulos, V., Machairas, K.: Quadruped pronking on compliant terrains using a reaction wheel. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3590–3595 (2016)Google Scholar
  33. 33.
    Koepl, D., Kemper, K., Hurst, J.: Force control for spring-mass walking and running. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 639–644 (2010)Google Scholar
  34. 34.
    Li, Z., Ge, Q., Ye, W., Yuan, P.: Dynamic balance optimization and control of quadruped robot systems with flexible joints. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1338–1351 (2016)CrossRefGoogle Scholar
  35. 35.
    Hutter, M., Hoepflinger, M., Remy, C.D., Siegwart, R.: Hybrid operational space control for compliant legged systems.. In: Robotics Science and Systems (RSS), pp. 129–136 (2012)Google Scholar
  36. 36.
    Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)CrossRefGoogle Scholar
  37. 37.
    Boaventura, T., Medrano-Cerda, G.A., Semini, C., Buchli, J., Caldwell, D.G.: Stability and performance of the compliance controller of the quadruped robot hyq. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1458–1464 (2013)Google Scholar
  38. 38.
    Eppinger, S., Seering, W.: Understanding bandwidth limitations in robot force control. In: Proceedings - 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 904–909 (1987)Google Scholar
  39. 39.
    Klein, C.A., Briggs, R.L.: Use of active compliance in the control of legged vehicles. IEEE Trans. Syst. Man Cybern. 10(7), 393–400 (1980)CrossRefGoogle Scholar
  40. 40.
    Wang, A., Seok, S., Wang, A., Otten, D., Kim, S.: Actuator design for high force proprioceptive control in fast legged locomotion actuator design for high force proprioceptive control in fast legged locomotion. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1970–1975 (2012)Google Scholar
  41. 41.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. ‘Human Robot Interaction and Cooperative Robots’, vol. 1(1524), pp. 399–406 (1995)Google Scholar
  42. 42.
    Pratt, J.E., Krupp, B.T.: Series elastic actuators for legged robots. In: Proceedings of SPIE 5422, Unmanned Ground Vehicle Technology VI, vol. 5422, pp. 135–144 (2004)Google Scholar
  43. 43.
  44. 44.
    Kronander, K., Billard, A.: Learning compliant manipulation through kinesthetic and tactile human-robot interaction. IEEE Trans. Haptic 7(3), 367–380 (2014)CrossRefGoogle Scholar
  45. 45.
    Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., Dario, P.: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments. J. Dyn. Syst. Meas. Control. 127(3), 321 (2005)CrossRefGoogle Scholar
  46. 46.
    Herr, H.M., Huang, G.T., McMahon, T.A.: A model of scale effects in mammalian quadrupedal running. J. Exp. Biol. 205(Pt 7), 959–967 (2002)Google Scholar
  47. 47.
    Mutka, A., Petric, F., Reichenbach, T., Kovacic, Z.: Elliptical motion method for robust quadrupedal locomotion. In: 2012 IEEE International Conference on Control Applications, pp. 1032–1038 (2012)Google Scholar
  48. 48.
    Alexander, R. McN.: The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computing, Laboratory for Robotics and Intelligent Control SystemsUniversity of ZagrebZagrebCroatia

Personalised recommendations