Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot


This paper presents a new hybrid compliance control system for a electrically powered quadruped robot leg composing both of active and variable passive compliance parts. The presented control system decouples the effects of each compliance type in a manner beneficial for the overall dynamics of the robot leg system. We investigate and demonstrate how the proposed hybrid compliance control of a mechanically stiff quadruped robot leg canimprove the performance of locomotion under moderate external disturbances. The observed robotic system integrates high gear ratio DC motors making the whole mechanism stiff and inconvenient for use when subjected to unknown disturbances, making this system a perfect candidate to implement compliance control. The variable passive compliance ensures the filtering of sudden impacts during locomotion while the active compliance allows lower bandwidth compliance control for locomotion purposes. Control system ensures that the joint effect of the active and variable passive compliance is fully controllable both in higher and lower frequency range. Mathematical modeling and simulation analysis is conducted in order to identify the performance of the proposed system. Finally, the system is experimentally validated from the single leg and quadruped robot perspective.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Rutishauser, S., Sprowitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using central pattern generators for locomotion control. In: 2008 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 710–715 (2008)

  2. 2.

    Sprowitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 932–950 (2013)

  3. 3.

    Ferris, D.P., Louie, M., Farley, C.T.: Running in the real world: adjusting leg stiffness for different surfaces. Proceedings. Biological sciences / The Royal Society 265(1400), 989–94 (1998)

  4. 4.

    Ugurlu, B., Kotaka, K., Narikiyo, T.: Actively-compliant locomotion control on rough terrain: cyclic jumping and trotting experiments on a stiff-by-nature quadruped. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3313–3320 (2013)

  5. 5.

    Mutka, A., Koco, E., Kovacic, Z.: Adaptive control of quadruped locomotion through variable compliance of revolute spiral feet. Int. J. Adv. Robot. Syst. 11(10), 1 (2014)

  6. 6.

    Zhou, D., Low, K.H.: Combined use of ground learning model and active compliance to the motion control of walking robotic legs. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 3, pp. 3159–3164 (2001)

  7. 7.

    Remy, C.D., Siegwart, R., Gehring, C., Bloesch, M., Hoepflinger, M.A., Hutter, M.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: 15th International Conference on Climbing and Walking Robot - CLAWAR 2012, pp. 1–8 (2012)

  8. 8.

    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quaduped robot. Control, IFAC Proceedings 41(2), 10822–10825 (2008)

  9. 9.

    Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering 225(6), 831–849 (2011)

  10. 10.

    Winkler, A., Havoutis, I., Bazeille, S., Ortiz, J., Focchi, M., Dillmann, R., Caldwell, D., Semini, C.: Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 6476–6482 (2014)

  11. 11.

    Semini, C., Buchli, J., Caldwell, D.G.: Quadrupedal trotting with active compliance. In: IEEE International Conference on Mechatronics (ICM), pp. 610–616 (2013)

  12. 12.

    Hutter, M., Gehring, C., Hoepflinger, M., Bloesch, M., Siegwart, R.: Towards combining speed, efficiency, versatility and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2014)

  13. 13.

    Paine, N., Oh, S., Sentis, L.: Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014)

  14. 14.

    Machairas, K., Papadopoulos, E.: An active compliance controller for quadruped trotting. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 743–748, Athens, Greece (2016)

  15. 15.

    Ugurlu, B., Havoutis, I., Semini, C., Caldwell, D.G.: Dynamic trot-walking with the hydraulic quadruped robot - hyq: analytical trajectory generation and active compliance control. In: Proceedings - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6044–6051 (2013)

  16. 16.

    Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T.G., Hollander, K.W.: Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int. J. Robot. Res. 28(1), 90–103 (2009)

  17. 17.

    Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ‘04. 2004, vol. 5, pp. 1–6 (2004)

  18. 18.

    Koco, E., Mutka, A., Kovacic, Z.: New variable passive-compliant element design for quadruped adaptation to stiffness-varying terrain. Int. J. Adv. Robot. Syst. 13(3), 1–17 (2016)

  19. 19.

    Galloway, K.C.: Passive Variable Compliance for Dynamic Legged Robots. ProQuest Dissertations and Theses, 3447626:159 (2010)

  20. 20.

    Hollander, K.W., Sugar, T.G., Herring, D.E.: Adjustable robotic tendon using a ‘jack spring’. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, vol. 2005, pp. 113–118 (2005)

  21. 21.

    Galloway, K.C., Clark, J.E., Koditschek, D.E.: Design of a multi-directional variable stiffness leg for dynamic running. In: Mechanics of Solids and Structures, Parts A and B, vol. 10, pp. 73–80 (2007)

  22. 22.

    Galloway, K.C., Clark, J.E., Koditschek, D.E.: Design of a tunable stiffness composite leg for dynamic locomotion. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2009, pp. 215–222 (2009)

  23. 23.

    Talebi, S., Poulakakis, I., Papadopoulos, E., Buehler, M.: Quadruped robot running with a bounding gait. In: 7th International Symposium on Experimental Robotics, September 2005, pp. 1–8 (2000)

  24. 24.

    ATI: F/T Transducer installation and operation manual. ATI Industrial Automation (2016)

  25. 25.

    Nikonovas, A., Harrison, A.J.L., Hoult, S., Sammut, D.: The application of force-sensing resistor sensors for measuring forces developed by the human hand. Proc. Inst. Mech. Eng. H J. Eng. Med. 218, 121–126 (2004)

  26. 26.

    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2828–2833 (2010)

  27. 27.

    Kuehn, D., Grimminger, F., Beinersdorf, F., Bernhard, F., Burchardt, A., Schilling, M., Simnofske, M., Stark, T., Zenzes, M., Kirchner, F.: Additional DOFs and sensors for bio-inspired locomotion: towards active spine, ankle joints, and feet for a quadruped robot. In: 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, pp. 2780–2786 (2011)

  28. 28.

    Hutter, M.: StarlETH & Co-design and control of legged robots with compliant actuation. ETH Zurich, PhD Thesis (21073) (2013)

  29. 29.

    Chuah, M.Y., Kim, S.: Enabling force sensing during ground locomotion: a bio-inspired, multi-axis, composite force sensor using discrete pressure mapping. IEEE Sensors J. 14(5), 1693–1703 (2014)

  30. 30.

    Optoforce: 3D force sensor OMD-20-SA-60n technical datesheet. Optoforce ltd. (2014)

  31. 31.

    Neunert, M., Boaventura, T., Buchli, J.: Why off-the-shelf physics simulators fail in evaluating feedback controller performance - a case study for quadrupedal robots. In: Proceedings - 19th International Conference on Climbing and Walking Robots (CLAWAR), pp. 1–8 (2016)

  32. 32.

    Vasilopoulos, V., Machairas, K.: Quadruped pronking on compliant terrains using a reaction wheel. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3590–3595 (2016)

  33. 33.

    Koepl, D., Kemper, K., Hurst, J.: Force control for spring-mass walking and running. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 639–644 (2010)

  34. 34.

    Li, Z., Ge, Q., Ye, W., Yuan, P.: Dynamic balance optimization and control of quadruped robot systems with flexible joints. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1338–1351 (2016)

  35. 35.

    Hutter, M., Hoepflinger, M., Remy, C.D., Siegwart, R.: Hybrid operational space control for compliant legged systems.. In: Robotics Science and Systems (RSS), pp. 129–136 (2012)

  36. 36.

    Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)

  37. 37.

    Boaventura, T., Medrano-Cerda, G.A., Semini, C., Buchli, J., Caldwell, D.G.: Stability and performance of the compliance controller of the quadruped robot hyq. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1458–1464 (2013)

  38. 38.

    Eppinger, S., Seering, W.: Understanding bandwidth limitations in robot force control. In: Proceedings - 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 904–909 (1987)

  39. 39.

    Klein, C.A., Briggs, R.L.: Use of active compliance in the control of legged vehicles. IEEE Trans. Syst. Man Cybern. 10(7), 393–400 (1980)

  40. 40.

    Wang, A., Seok, S., Wang, A., Otten, D., Kim, S.: Actuator design for high force proprioceptive control in fast legged locomotion actuator design for high force proprioceptive control in fast legged locomotion. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1970–1975 (2012)

  41. 41.

    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. ‘Human Robot Interaction and Cooperative Robots’, vol. 1(1524), pp. 399–406 (1995)

  42. 42.

    Pratt, J.E., Krupp, B.T.: Series elastic actuators for legged robots. In: Proceedings of SPIE 5422, Unmanned Ground Vehicle Technology VI, vol. 5422, pp. 135–144 (2004)

  43. 43.

    Robotic systems lab. (2016)

  44. 44.

    Kronander, K., Billard, A.: Learning compliant manipulation through kinesthetic and tactile human-robot interaction. IEEE Trans. Haptic 7(3), 367–380 (2014)

  45. 45.

    Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., Dario, P.: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments. J. Dyn. Syst. Meas. Control. 127(3), 321 (2005)

  46. 46.

    Herr, H.M., Huang, G.T., McMahon, T.A.: A model of scale effects in mammalian quadrupedal running. J. Exp. Biol. 205(Pt 7), 959–967 (2002)

  47. 47.

    Mutka, A., Petric, F., Reichenbach, T., Kovacic, Z.: Elliptical motion method for robust quadrupedal locomotion. In: 2012 IEEE International Conference on Control Applications, pp. 1032–1038 (2012)

  48. 48.

    Alexander, R. McN.: The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)

Download references

Author information

Correspondence to Edin Koco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 25.5 MB)

(MP4 25.5 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koco, E., Mirkovic, D. & Kovačić, Z. Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot. J Intell Robot Syst 94, 537–563 (2019) doi:10.1007/s10846-018-0777-9

Download citation


  • Quadruped robot
  • Active compliance
  • Variable passive compliance
  • Hybrid compliance control
  • Virtual springs