Journal of Intelligent & Robotic Systems

, Volume 92, Issue 1, pp 107–124 | Cite as

Critical Rays Self-adaptive Particle Filtering SLAM

  • Wenjie Song
  • Yi YangEmail author
  • Mengyin Fu
  • Alain Kornhauser
  • Meiling Wang


This paper presents CRSPF-SLAM, a critical rays self-adaptive particle filtering occupancy grid based SLAM system that can operate efficiently with different kinds of odometer in real time, in small and large, indoor and outdoor environments for various platforms. Its basic idea is to eliminate the accumulated error of odometer through scan to map matching based on particle filtering. Through some improvements for the original particle filtering method, the lidar system becomes more robust to conduct accurate localization and mapping. Specifically, in our proposed method, particle filter based on Monte-Carlo algorithm is designed to be out-of-step to the odometer; During the scan matching process, the influence of some critical rays selected through a ray-selection algorithm is enhanced and that of the unreliable rays is weaken or removed; The current optimal match value is regarded as the feedback to reset the particle number and the filtering range; Once the optimal pose and scan are obtained, the previous error scan stored in the map will be removed. It is also introduced in the paper that the method can work effectively with dead reckoning, visual odometry and IMU, respectively. And we have tried to use it on different types of platforms — an indoor service robot, a self-driving car and an off-road vehicle. The experiments in a variety of challenging environments, such as bumpy and characterless area, are conducted and analyzed.


SLAM Particle filtering Critical rays Self-adaptive Occupancy grid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MP4 2.34 MB)

10846_2017_742_MOESM2_ESM.mp4 (749 kb)
(MP4 748 KB)

(MP4 3.33 MB)


  1. 1.
    Bengtsson, O., Baerveldt, A.J.: Robot localization based on scan-matching—estimating the covariance matrix for the idc algorithm. Robot. Auton. Syst. 44(1), 29–40 (2003)CrossRefGoogle Scholar
  2. 2.
    Blanco, J.L.: Derivation and implementation of a full 6d ekf-based solution to bearing-range slam. University of Malaga, Spain,∼jlblanco/papers/RangeBearingSLAM6D.pdf, Technical Report (2008)
  3. 3.
    Chetverikov, D.: A simple and efficient algorithm for detection of high curvature points in planar curves. In: International Conference on Computer Analysis of Images and Patterns, pp 746–753. Springer (2003)Google Scholar
  4. 4.
    Chong, K.S., Kleeman, L.: Accurate odometry and error modelling for a mobile robot. In: IEEE International Conference on Robotics and Automation, 1997. Proceedings., 1997, vol. 4, pp 2783–2788. IEEE (1997)Google Scholar
  5. 5.
    Cronin, T.M.: A boundary concavity code to support dominant point detection. Pattern Recogn. Lett. 20(6), 617–634 (1999)CrossRefGoogle Scholar
  6. 6.
    Del Moral, P.: Non-linear filtering: interacting particle resolution. Markov Processes and Related Fields 2(4), 555–581 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diosi, A., Kleeman, L.: Laser scan matching in polar coordinates with application to slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.(IROS 2005). 2005, pp 3317–3322. IEEE (2005)Google Scholar
  8. 8.
    Dryanovski, I., Valenti, R.G., Xiao, J.: Fast visual odometry and mapping from rgb-d data. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp 2305–2310. IEEE (2013)Google Scholar
  9. 9.
    Eliazar, A., Parr, R.: Dp-slam: fast, robust simultaneous localization and mapping without predetermined landmarks. In: IJCAI, vol. 3, pp 1135–1142 (2003)Google Scholar
  10. 10.
    Engel, J., Schöps, T, Cremers, D.: Lsd-slam: large-scale direct monocular slam. In: Computer Vision–ECCV 2014, pp 834–849. Springer (2014)Google Scholar
  11. 11.
    Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3d reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), 2011 IEEE, pp 963–968. IEEE (2011)Google Scholar
  12. 12.
    Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 2432–2437. IEEE (2005)Google Scholar
  13. 13.
    Gutmann, J.S.: Robuste navigation autonomer mobiler systeme. Aka (2000)Google Scholar
  14. 14.
    Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for rgb-d cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp 2100–2106. IEEE (2013)Google Scholar
  15. 15.
    Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system with full 3d motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2011, pp 155–160. IEEE (2011)Google Scholar
  16. 16.
    Kümmerle, R, Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g 2 o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pp 3607–3613. IEEE (2011)Google Scholar
  17. 17.
    Leonard, J.J., Durrant-Whyte, H.F., Cox, I.J.: Dynamic map building for an autonomous mobile robot. Int. J. Robot. Res. 11(4), 286–298 (1992)CrossRefGoogle Scholar
  18. 18.
    Lingemann, K., Surmann, H., Nüchter, A, Hertzberg, J.: Indoor and outdoor localization for fast mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004, vol. 3, pp 2185–2190. IEEE (2004)Google Scholar
  19. 19.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)CrossRefGoogle Scholar
  20. 20.
    Marji, M., Siy, P.: A new algorithm for dominant points detection and polygonization of digital curves. Pattern Recogn. 36(10), 2239–2251 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mur-Artal, R., Montiel, J., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Losada, D., Minguez, J.: Improved data association for icp-based scan matching in noisy and dynamic environments. In: IEEE International Conference on Robotics and Automation, 2007, pp 3161–3166. IEEE (2007)Google Scholar
  23. 23.
    Santos, J.M., Portugal, D., Rocha, R.P.: An evaluation of 2d slam techniques available in robot operating system. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2013, pp 1–6. IEEE (2013)Google Scholar
  24. 24.
    Steux, B., Hamzaoui, O.E.: Tinyslam: a slam algorithm in less than 200 lines c-language program. In: 11th International Conference on Control Automation Robotics & Vision (ICARCV), 2010, pp 1975–1979. IEEE (2010)Google Scholar
  25. 25.
    Taleghani, S., Sharbafi, M.A., Haghighat, A.T., Esmaeili, E.: Ice matching, a robust mobile robot localization with application to slam. In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2010, vol. 1, pp 186–192. IEEE (2010)Google Scholar
  26. 26.
    Tsardoulias, E., Petrou, L.: Critical rays scan match slam. J. Intell. Robot. Syst. 72(3-4), 441–462 (2013)CrossRefGoogle Scholar
  27. 27.
    Wong, R., Xiao, J., Joseph, S.L., Shan, Z.: Data association for simultaneous localization and mapping in robotic wireless sensor networks. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp 459–464. IEEE (2010)Google Scholar
  28. 28.
    Zhu, H., Fu, M., Yang, Y., Wang, X., Wang, M.: A path planning algorithm based on fusing lane and obstacle map. In: IEEE 17Th International Conference on Intelligent Transportation Systems (ITSC), 2014, pp 1442–1448. IEEE (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Wenjie Song
    • 1
    • 2
  • Yi Yang
    • 1
    Email author
  • Mengyin Fu
    • 1
    • 3
  • Alain Kornhauser
    • 2
  • Meiling Wang
    • 1
  1. 1.School of AutomationBeijing Institute of TechnologyBeijingChina
  2. 2.Princeton Autonomous Vehicle EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Nanjing University of Science and TechnologyNanjingChina

Personalised recommendations