Advertisement

Journal of Intelligent & Robotic Systems

, Volume 91, Issue 2, pp 249–262 | Cite as

Whole-body Control of a Mobile Manipulator Using Feedback Linearization and Dual Quaternion Algebra

  • Frederico Fernandes Afonso Silva
  • Bruno Vilhena AdornoEmail author
Article
  • 218 Downloads

Abstract

This paper presents the whole-body control of a nonholonomic mobile manipulator using feedback linearization and dual quaternion algebra. The controller, whose reference is a unit dual quaternion representing the desired end-effector pose, acts as a dynamic trajectory generator for the end-effector, and input signals for both nonholonomic mobile base and manipulator arm are generated by using the pseudoinverse of the whole-body Jacobian matrix. In order to deal with the nonholonomic constraints, the input signal to the mobile base generated by the whole-body motion control is properly remapped to ensure feasibility. The Lyapunov stability for the proposed controller is presented and experimental results on a real platform are performed in order to compare the proposed scheme to a traditional classic whole-body linear kinematic controller. The results show that, for similar convergence rate, the nonlinear controller is capable of generating smoother movements while having lower control effort than the linear controller.

Keywords

Nonlinear control Dual quaternion Mobile manipulator Whole-body control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG).

Supplementary material

(MP4 2.36 MB)

References

  1. 1.
    Chen, T.L., Ciocarlie, M., Cousins, S., Grice, P., Hawkins, K., Hsiao, K., Kemp, C., King, C.H., Lazewatsky, D., Leeper, A.E., Nguyen, H., Paepcke, A., Pantofaru, C., Smart, W., Takayama, L.: Robots for humanity: Using assistive robotics to empower people with disabilities. IEEE Robot. Autom. Mag. 20(1), 30–39 (2013)CrossRefGoogle Scholar
  2. 2.
    Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein, E., Muja, M., Eruhimov, V., Foote, T., Hsu, J., Rusu, R.B., Marthi, B., Bradski, G., Konolige, K., Gerkey, B., Berger, E.: Autonomous door opening and plugging in with a personal robot. In: 2010 IEEE International Conference on Robotics and Automation, pp. 729–736. IEEE, New York (2010). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509556
  3. 3.
    Nishiwaki, K., Kagami, S., Inoue, H.: Object manipulation by hand using whole-body motion coordination. In: IEEE International Conference Mechatronics and Automation, 2005, vol. 4, pp. 1778–1783. IEEE, New York (2005). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1626829
  4. 4.
    Sentis, L., Khatib, O.: A whole-body control framework for humanoids operating in human environments. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2641–2648. IEEE, New York (2006). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1642100
  5. 5.
    Gienger, M., Janben, H., Goerick, C.: Exploiting task intervals for whole body robot control. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2484–2490. IEEE, New York (2006). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4058761
  6. 6.
    Nagasaka, K., Kawanami, Y., Shimizu, S., Kito, T., Tsuboi, T., Miyamoto, A., Fukushima, T., Shimomura, H.: Whole-body cooperative force control for a two-armed and two-wheeled mobile robot using generalized inverse dynamics and idealized joint units. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3377–3383. IEEE, New York (2010). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509474
  7. 7.
    Dietrich, A., Wimbock, T., Albu-Schaffer, A.: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3199–3206. IEEE, New York (2011). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6048101
  8. 8.
    Adorno, B.V.: Two-arm Manipulation: From Manipulators to Enhanced Human-Robot Collaboration [Contribution a la manipulation a deux bras : des manipulateurs a la collaboration homme-robot], Ph.D. dissertation, p. 163. https://tel.archives-ouvertes.fr/tel-00641678/ (2011)
  9. 9.
    Adorno, B.V., Fraisse, P., Druon, S.: Dual position control strategies using the cooperative dual task-space framework. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3955–3960. IEEE (2010).  https://doi.org/10.1109/IROS.2010.5650218. http://ieeexplore.ieee.org/document/5650218/
  10. 10.
    Salazar-Sangucho, F.R., Adorno, B.V.: Modelagem e Controle de Corpo Completo Usando Quaternios Duais para um Manipulador Movel. In: Anais do XX Congresso Brasileiro de Automatica, pp 1544–1551. SBA, Belo Horizonte (2014). http://www.swge.inf.br/cba2014/anais/PDF/1569934957.pdf
  11. 11.
    Park, H.A., Lee, C.S.G.: Cooperative-dual-task-space-based whole-body motion balancing for humanoid robots. In: 2013 IEEE International Conference on Robotics and Automation, pp 4797–4802. IEEE, New York (2013). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6631261
  12. 12.
    Adorno, B.V.: Robot kinematic modeling and control based on dual quaternion algebra – part i: Fundamentals, p. 47. Working paper or preprint https://hal.archives-ouvertes.fr/hal-01478225v1 (2017)
  13. 13.
    Oliveira, A.C., Adorno, B.V: Balance control of a humanoid robot based on the cooperative dual task-space framework. In: XII Simposio Brasileiro de Automacao Inteligente (SBAI), pp 485–490. SBA (2015). http://swge.inf.br/SBAI2015/anais/139.pdf
  14. 14.
    Fonseca, M.D.P.A., Adorno, B.V.: Whole-body modeling and hierarchical control of a humanoid robot based on dual quaternion algebra. In: 2016 13th Latin American Robotics Symposium and 2016 4th Brazilian Symposium on Robotics (LARS-SBR). https://ieeexplore.ieee.org/document/7783510/, ISBN: 978-1-5090-3656-1, pp 103–108. IEEE, Recife (2016),  https://doi.org/10.1109/LARS-SBR.2016.24
  15. 15.
    Pham, H-L, Perdereau, V., Adorno, B.V., Fraisse, P.: Position and orientation control of robot manipulators using dual quaternion feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 658–663. IEEE, New York (2010). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5651097
  16. 16.
    Figueredo, L., Adorno, B., Ishihara, J., Borges, G.: Robust kinematic control of manipulator robots using dual quaternion representation. In: 2013 IEEE International Conference on Robotics and Automation, pp 1949–1955. IEEE, Karlsruhe (2013). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6630836
  17. 17.
    Marinho, M.M., Figueredo, L.F.C., Adorno, B.V.: A dual quaternion linear-quadratic optimal controller for trajectory tracking. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4047–4052. IEEE, New York (2015). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7353948
  18. 18.
    Wang, X., Yu, C., Lin, Z.: A dual quaternion solution to attitude and position control for rigid-body coordination. IEEE Trans. Robot. 28(5), 1162–1170 (2012). [Online]. Available: https://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6218785 CrossRefGoogle Scholar
  19. 19.
    Wang, X., Yu, C.: Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics. Syst. Control Lett. 62(3), 225–233 (2013). [Online]. Available:  https://doi.org/10.1016/j.sysconle.2012.11.019 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kussaba, H.T.M., Figueredo, L.F.C., Ishihara, J.Y., Adorno, B.V.: Hybrid kinematic control for rigid body pose stabilization using dual quaternions. J. Franklin Inst. 354(7), 2769–2787 (2017).  https://doi.org/10.1016/j.jfranklin.2017.01.028. http://linkinghub.elsevier.com/retrieve/pii/S0016003217300522. ISSN: 00160032MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Silva, F.F.A., Adorno, B.V.: Whole-body control of a mobile manipulator using feedback linearization based on dual quaternions. In: 2016 13th Latin American Robotics Symposium and 2016 4th Brazilian Symposium on Robotics (LARS-SBR). IEEE Conference Publications, Recife (2016)Google Scholar
  22. 22.
    Salazar-Sangucho, F.R.: Modelagem e Controle de Corpo Completo Usando Quaternios Duais Aplicados a um Manipulador Movel, p. 82. Masters Thesis, Universidade Federal de Minas Gerais. https://ppgee.ufmg.br/defesas/1122M.PDF (2014)
  23. 23.
    Selig, J.M.: In: Gries, D., Schneider, F. B. (eds) Geometric fundamentals of robotics, 2nd edn. Springer-Verlag New York Inc., New York (2005)Google Scholar
  24. 24.
    Hamilton, W.R.I.I: On quaternions; or on a new system of imaginaries in algebra. Philos. Mag. Series 3 25(163), 10–13 (1844). [Online]. Available:  https://doi.org/10.1080/14786444408644923. https://www.tandfonline.com/doi/abs/10.1080/14786444408644923 Google Scholar
  25. 25.
    Han, D.-P., Wei, Q., Li, Z.-X.: Kinematic control of free rigid bodies using dual quaternions. Int. J. Autom. Comput. 5(3), 319–324 (2008)CrossRefGoogle Scholar
  26. 26.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G: Robotics: Modelling, Planning and Control. Springer Science & Business Media Berlin, Springer-Verlag London (2009)CrossRefGoogle Scholar
  27. 27.
    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
  28. 28.
    Matrosov, V.: On the stability of motion. J. Appl. Math. Mech. 26(5), 1337–1353 (1962). [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0021892862900102 CrossRefzbMATHGoogle Scholar
  29. 29.
    Astolfi, A., Praly, L.: A LaSalle version of Matrosov theorem. In: IEEE Conference on Decision and Control and European Control Conference, pp 320–324. IEEE, New York (2011). [Online]. Available: https://ieeexplore.ieee.org/document/6161174/

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Frederico Fernandes Afonso Silva
    • 1
  • Bruno Vilhena Adorno
    • 2
    Email author
  1. 1.The Graduate Program in Electrical EngineeringFederal University of Minas Gerais (UFMG)BeloBrazil
  2. 2.The Department of Electrical EngineeringFederal University of Minas Gerais (UFMG)BeloBrazil

Personalised recommendations