Walking Stabilization Control for Humanoid Robots on Unknown Slope Based on Walking Sequences Adjustment

  • Jiatao Ding
  • Yang Wang
  • Minghui Yang
  • Xiaohui XiaoEmail author


In order to achieve higher adaptability, the control strategy based on walking sequence adjustment for accommodating unexpected slope terrains in bipedal walking is proposed in this paper, which consists of the Zero-Moment-Point (ZMP) tracking control, foot landing control, posture &yaw control. In our previous work, the 3-D walking sequences (WS) were defined and the online walking pattern generation based on the modified minimal orbit energy control (MMOEC) was realized. In this paper, utilizing the sensory reflex, the walking status is estimated and walking modes are judged when walking on slope terrains. Then, considering the stability and feasibility constraints, the real-time WS adjustment strategies for different walking modes are proposed. For the stabilization control, combining the modified preview control with the MMOEC by the angle coefficient, the ZMP generation and tracking control is first realized. Besides, the foot landing control is also adopted to reduce the impact force and accommodate the unknown terrain. With the posture control and yaw reduction, the stable biped walking on slopes terrains are realized, without a priori information.


Bipedal walking Stabilization control Unknown slope terrain 3-D walking sequences Humanoid robots Zero-Moment-Point (ZMP) 

Mathematics Subject Classification (2010)

93C85 68T40 70B15 70Q05 93C40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by the National Foundation of China (Grant No. 51175383).

Supplementary material

(MP4 37.9 MB)


  1. 1.
    Vukobratovíc, M., Borovac, B.: Zero-Moment-Point-Thirty five years of its life. Int. J. Human. Robot. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  2. 2.
    Huang, Q., Nakamura, Y.: Sensory reflex control for humanoid walking. IEEE Trans. Robot. 21(5), 977–984 (2005)CrossRefGoogle Scholar
  3. 3.
    Chevallereau, C., Grizzle, J.W., Shih, C.L.: Asymptotically stable walking of a five-link under actuated 3-D bipedal robot. IEEE Trans. Robot. 25(1), 37–50 (2009)CrossRefGoogle Scholar
  4. 4.
    Shafii, N., Lau, N., Reis, L.P.: Learning to walk fast: optimized hip height movement for simulated and real humanoid robots. J. Intell. Robot. Syst. Theor. Appl. 80(3–4), 555–571 (2015)CrossRefGoogle Scholar
  5. 5.
    Englsberger, J., Ott, C., Albu-Schäffer, A.: Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31(2), 355–368 (2015)CrossRefGoogle Scholar
  6. 6.
    Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots 40(3), 429–455 (2016)CrossRefGoogle Scholar
  7. 7.
    Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Autom. 6(1), 86–96 (1990)CrossRefGoogle Scholar
  8. 8.
    Kim, J.Y., Park, I.W., Oh, J.H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. Theor. Appl. 48(4), 457–484 (2007)CrossRefGoogle Scholar
  9. 9.
    Hong, Y.D., Lee, B.J., Kim, J.H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 16(4), 783–789 (2011)CrossRefGoogle Scholar
  10. 10.
    Chen, J.F., Ding, J.T., Xiao, X.H.: Gait planning of biped robot based on 3-D walking sequence and experiment research, accepted by Journal of Central South University(to appear)Google Scholar
  11. 11.
    André, J., Teixeira, C., Santos, C.P., Costa, L.: Adapting biped locomotion to sloped environments. J. Intell. Robot. Syst. Theor. Appl. 80(3–4), 625–640 (2015)CrossRefGoogle Scholar
  12. 12.
    Vundavilli, P.R., Pratihar, D.K.: Soft computing-based gait planners for a dynamically balanced biped robot negotiating sloping surfaces. Appl. Soft Comput. J. 9(1), 191–208 (2009)CrossRefGoogle Scholar
  13. 13.
    Kang, H.J., Hashimoto, K., Kondo, H., Hattori, K., Nishikawa, K., Hama, Y., Kato, K.: Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface. In: IEEE international conference on robotics and automation, pp 5167–5172 (2010)Google Scholar
  14. 14.
    Iida, F., Minekawa, Y., Rummel, J., Seyfarth, A.: Toward a human-like biped robot with compliant legs. Robot. Auton. Syst. 57(2), 139–144 (2009)CrossRefGoogle Scholar
  15. 15.
    Sabe, K., Fukuchi, M., Gutmann, J.S., Ohashi, T., Kawamoto K., Yoshigahara, T.: Obstacle avoidance and path planning for humanoid robots using stereo vision. In: IEEE International Conference on Robotics and Automation, pp. 592–597 (2004)Google Scholar
  16. 16.
    Michel, P., Chestnutt, J., Kagami, S., Nishiwaki, K., Kuffner, J., Kanade, T.: GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 463–469 (2007)Google Scholar
  17. 17.
    Fallon, M.F., Marion, P., Deits, R., Whelan, T., Antone, M., McDonald, J., Tedrake, R.: Continuous humanoid locomotion over uneven terrain using stereo fusion. In: IEEE-RAS 15th International Conference on Humanoid Robots, pp. 881–888 (2015)Google Scholar
  18. 18.
    Li, Z., Tsagarakis, N.G., Caldwell, D.G.: Stabilizing humanoids on slopes using terrain inclination estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4124–4129 (2013)Google Scholar
  19. 19.
    Li, Z., Zhou, C., Tsagarakis, N., Caldwell, D.: Compliance control for stabilizing the humanoid on the changing slope based on terrain inclination estimation. Auton. Robot. 40(6), 955–971 (2016)CrossRefGoogle Scholar
  20. 20.
    Chew, C. M., Pratt, J., Pratt, G.: Blind walking of a planar bipedal robot on sloped terrain. In: IEEE International Conference on Robotics and Automation, pp. 381–386 (1999)Google Scholar
  21. 21.
    Ogino, M., Toyama, H., Asada, M.: Stabilizing biped walking on rough terrain based on the compliance control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 4047–4052 (2007)Google Scholar
  22. 22.
    Liu, Y., Wensing, P.M., Schmiedeler, J.P., Orin, D.E.: Terrain-blind humanoid walking based on a 3-D actuated dual-SLIP model. IEEE Robot. Autom. 1(2), 1073–1080 (2016)CrossRefGoogle Scholar
  23. 23.
    Diedam, H., Dimitrov, D., Wieber, P.-B., Mombaur, K., Diehl, M: Online walking gait generation with adaptive foot positioning through linear model predictive control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1121–1126 (2008)Google Scholar
  24. 24.
    Griffin, R.J., Leonessa, A.: Model predictive control for dynamic footstep adjustment using the divergent component of motion. In: IEEE International Conference on Robotics and Automation (2016)Google Scholar
  25. 25.
    Feng, S., Xinjilefu, X., Atkeson, C.G., Kim, J.: Robust dynamic walking using online foot step optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2016)Google Scholar
  26. 26.
    Kryczka, P., et al.: Online regeneration of bipedal walking gait pattern optimizing footstep placement and timing. In: IEEE/RSJ Intl Conference on Intelligent Robots and Systems (2015)Google Scholar
  27. 27.
    Khadiv, M., Herzog, A., Moosavian, S.A.A., Righetti, L.: Step timing adjustment: a step toward generating robust gaits. In: IEEE-RAS 16th International Conference on Humanoid Robots, pp. 35–42 (2016)Google Scholar
  28. 28.
    Nishiwaki, K., Kagami, S.: Strategies for adjusting the zmp reference trajectory for maintaining balance in humanoid walking. In: 2010 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4230–4236). IEEE (2010)Google Scholar
  29. 29.
    Kajita, S., et al.: Biped walking pattern generation by using preview control of zero-moment point. In: IEEE International Conference on Robotics and Automation (2003)Google Scholar
  30. 30.
    Ding, J., Xiao, X., Wang, Y., Xu, B.: Preview control with an angle adjustment strategy for robust real-time biped walking pattern generation. In: International Conference on Intelligent Robotics and Applications (2015)Google Scholar
  31. 31.
    Ding, J., Xiao, X., Wang, Y.: Preview control with adaptive fuzzy strategy for online biped gait generation and walking control. Int. J. Robot. Autom. 31(6), 677–699 (2016)Google Scholar
  32. 32.
    Kajita, S., Hirukawa, H., Yokoi, K., Harada, K.: Humanoid Robots. Ohm-sha Ltd (2005)Google Scholar
  33. 33.
    Miossec, S., Aoustin, Y.: Walking gait composed of single and double supports for a planar biped without feet. In: Proceedings of the 5th International Conference on Climbing Walking Robots (CLAWAR), pp. 767–774 (2002)Google Scholar
  34. 34.
    Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 239–246 (2001)Google Scholar
  35. 35.
    NAO Documentation. Available from:
  36. 36.
    Adams Online help documentation. Available from: http://MSC.Software/Adams/2013/help/wwhelp/wwhimpl/js/html/wwhelp.html

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jiatao Ding
    • 1
  • Yang Wang
    • 1
  • Minghui Yang
    • 1
  • Xiaohui Xiao
    • 1
    Email author
  1. 1.Department of Mechanical Engineering, School of Power and Mechanical EngineeringWuhan UniversityWuhanChina

Personalised recommendations