Advertisement

Journal of Intelligent & Robotic Systems

, Volume 91, Issue 2, pp 181–192 | Cite as

Design of a Bio-Inspired Autonomous Underwater Robot

  • Daniele CostaEmail author
  • Giacomo Palmieri
  • Matteo-Claudio Palpacelli
  • Luca Panebianco
  • David Scaradozzi
Article

Abstract

The following paper presents the design and fabrication of an ostraciiform swimming robot and its navigation control and guidance system. Compared to other biomimetic vehicles, the chosen architecture has a lower propulsive efficiency but is easier to waterproof and capable to withstand greater pressures. To generate the alternating motion of the robot bio-inspired thruster, namely a plane fin, a transmission system was designed to replace the direct drive widely adopted in underwater biomimetic vehicles. The mechanical efficiency of two alternative mechanisms capable to actuate the fin were computed according to a preliminary sizing of the robot and its targeted swimming performances. Therefore, the more suitable solution was manufactured and installed aboard. At the same time, a proper navigation, guidance and control architecture (NGC) was designed and then integrated in the robot main controller. The proposed solution allows the vehicle to perform different missions autonomously once their profiles are received from the base station. Preliminary tests results and future works are discussed in the final conclusions.

Keywords

Biomimetics AUV Swim mechanics Robotic fish NGC systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy, A.J., Haroutunian, M.: Using bio-inspiration to improve capabilities of underwater vehicles. In: 17th International Symposium on Unmanned Untethered Submersible Technology (UUST 2011), Portsmouth, pp. 20–31 (2011)Google Scholar
  2. 2.
    Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)CrossRefGoogle Scholar
  3. 3.
    Breder, C.M.: The locomotion of fish. Zoologica 4, 159–256 (1926)Google Scholar
  4. 4.
    Anderson, J.M., Streitlien, K., Barrett, D.S., Triantafyllou, M.S.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wang, Z., Hang, G., Li, J., Wang, Y., Xiao, K.: A micro robot fish with embedded SMA wire actuated flexible biomimetic fish. Sensors Actuators A Phys. Elsevier 144(2), 354–360 (2008)CrossRefGoogle Scholar
  6. 6.
    Scaradozzi, D., Palmieri, G., Costa, D., Pinelli, A.: BCF swimming locomotion for autonomous underwater robots: a review and a novel solution to improve control and efficiency. Ocean Eng. 130, 437–453 (2017)CrossRefGoogle Scholar
  7. 7.
    Barrett, D.S.: The design of a flexible hull undersea vehicle propelled by an oscillating foil. Massachusetts Institute of Technology Department of Ocean Engineering (1994)Google Scholar
  8. 8.
    Hirata, K.: Development of experimental fish robot. In: Sixth International Symposium on Marine Engineering (ISME 2000), Tokio, pp. 23–27 (2000)Google Scholar
  9. 9.
    Anderson, J.M., Narender, K.C.: Maneuvering and stability performance of a robotic tuna. Integr. Comp. Biol. 42(1), 118–126 (2002)CrossRefGoogle Scholar
  10. 10.
    Fukuda, T., et al.: Mechanism and swimming experiment of micro mobile robot in water. In: IEEE Workshop on Micro Electro Mechanical Systems, MEMS’94, Proceedings. IEEE, pp. 273–278 (1994)Google Scholar
  11. 11.
    Suleman, A., Crawford, C.: Studies on hydrodynamic propulsion of a biomimetic tuna. In: Inzartsev, A.V. (ed.) Underwater Vehicles, pp. 459–486 (2008)Google Scholar
  12. 12.
    Kodati, P., Hinkle, J., Winn, A., Deng, X.: Microautonomous robotic ostraciiform (MARCO): hydrodynamics, design and fabrication. IEEE Trans. Robot. 24(1), 105–117 (2008)CrossRefGoogle Scholar
  13. 13.
    Epps, B.P., Valdivia y Alvarado, P., Youcef-Toumi, K., Techet, A.H.: Swimming performance of a biomimetic compliant fish-like robot. Experimental Fluids 47(6), 927–939 (2009)CrossRefGoogle Scholar
  14. 14.
    Stefanini, C., Orofino, S., Manfredi, L., Mintchev, S., Marrazza, S., Assaf, T., Capantini, L., Sinibaldi, E., Grillner, S., Wallén, P., Dario, P.: A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir. Biomim. 7(2) (2012)Google Scholar
  15. 15.
    Kruusmaa, M., Fiorini, P., Megill, W., De Vittorio, M., Akanyeti, O., Visentin, F., Chambers, L., El Daou, H., Fiazza, M.-C., Jezov, J., Listak, M., Rossi, L., Salumae, T., Toming, G., Venturelli, R., Jung, D., Brown, J., Rizzi, F., Qualtieri, A., Maud, J., Liszewski, A.: Filose for svenning: a flow sensing bioinspired robot. IEEE Robot. Autom. Mag. 21(3), 51–62 (2014)CrossRefGoogle Scholar
  16. 16.
    Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B Biol. Sci. 179(1055), 125–138 (1971)CrossRefGoogle Scholar
  18. 18.
    Tzeranis, D., Papadopoulos, E., Triantafyllou, G.: On the design of an autonomous robot fish. In: Proceedings of the 11th IEEE Mediterranean Conference on Control and Automation (MED 2003), Rhodes, pp. 17–20 (2003)Google Scholar
  19. 19.
    Yu, J., Long, W.: Parameter optimization of simplified propulsive model for biomimetic robot fish. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, pp. 3306–3311 (2005)Google Scholar
  20. 20.
    Liu, J., Huosheng, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7(1), 35–48 (2010)CrossRefGoogle Scholar
  21. 21.
    Blake, R.W.: On ostraciiform locomotion. J. Mar. Biol. Assoc. UK 57(4), 1047–1055 (1977)CrossRefGoogle Scholar
  22. 22.
    Costa, D., Palmieri, G., Palpacelli, M.-C., Callegari, M., Scaradozzi, D.: Design of a bio-inspired underwater vehicle. In: 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA 2016), IEEE (2016)Google Scholar
  23. 23.
    Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272(3), 64–71 (1995)CrossRefGoogle Scholar
  24. 24.
    Franklin, J.: Ingenious Mechanisms for Designers and Inventors. Industrial Press (1930)Google Scholar
  25. 25.
    Allotta, B., Caiti, A., Chisci, L., Costanzi, R., Di Corato, F., Fantacci, C., Fenucci, D., Meli, E., Ridolfi, A.: Development of a navigation algorithm for autonomous underwater vehicles. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV 2015), Girona, vol. 28(2), pp. 64–69 (2015)Google Scholar
  26. 26.
    Allotta, B., Costanzi, R., Ridolfi, A., Reggiannini, M., Tampucci, M., Scaradozzi, D.: Archaeology Oriented Optical Acquisitions through MARTA AUV during ARROWS European Project Demonstration. In: MTS/IEEE OCEANS 2016, Monterey, pp. 1–4 (2016)Google Scholar
  27. 27.
    Conte, G., De Capua, G.P., Scaradozzi, D.: Designing the NGC system of a small ASV for tracking underwater targets. Robot. Auton. Syst. 76 I. C, 46–57 (2016)CrossRefGoogle Scholar
  28. 28.
    Conte, G., Gambella, L., Scaradozzi, D., Zanoli, S., Caiti, A., Calabrò, V., Alcocer, A., Alves, J., Cardeira, B., Cunha, R., Curado, F., Oliveira, P., Oliveira, A., Pascoal, A., Rufino, M., Sebastĩo, L., Silvestre, C.: Underwater vehicle technology in the European research project VENUS. Underw. Technol. 28(4), 175–185 (2009)CrossRefGoogle Scholar
  29. 29.
    Conte, G., Scaradozzi, D., Sorbi, L., Panebianco, L., Mannocchi, D.: ROS Multi-agent structure for autonomous surface vehicles, MTS/IEEE OCEANS 2015 Genoa (2015)Google Scholar
  30. 30.
    Scaradozzi, D., Sorbi, L., Conte, G.: Assisted guidance system for micro ROV in underwater data gathering missions. In: Proceedings of the 20th Mediterranean Conference of Control and Automation (MED 2012), Barcelona, pp. 1373–1378 (2012)Google Scholar
  31. 31.
    Morganti, G., Perdon, A.M., Conte, G., Scaradozzi, D.: Multi-agent system theory for modelling a home automation system. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5517 LNCS (Part 1), pp. 585–593 (2009)Google Scholar
  32. 32.
    Wooldridge, M.: An introduction to muliagents systems. Wiley (2009)Google Scholar
  33. 33.
    Eloy, C.: Optimal strouhal number for swimming animals. J. Fluids Struct. 30, 205–208 (2012)CrossRefGoogle Scholar
  34. 34.
    Lamb, H.: Hydrodynamics. Cambridge University Press (1932)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Daniele Costa
    • 1
    Email author
  • Giacomo Palmieri
    • 1
  • Matteo-Claudio Palpacelli
    • 1
  • Luca Panebianco
    • 2
  • David Scaradozzi
    • 2
    • 3
  1. 1.Department of Industrial Engineering & Mathematical Sciences (DIISM)Polytechnic University of MarcheAnconaItaly
  2. 2.Department of Information Engineering (DII)Polytechnic University of MarcheAnconaItaly
  3. 3.Laboratoire des Sciences de l’Information et des Systèmes Equipe I&M (ESIL) – CNRSMarseilleFrance

Personalised recommendations