Journal of Intelligent & Robotic Systems

, Volume 89, Issue 3–4, pp 371–385 | Cite as

Dual Integral Sliding Mode Control Loop for Mechanical Error Correction in Trajectory-Tracking of a Planar 3-PRP Parallel Manipulator

  • S. Mohan
  • J. K. Mohanta


This paper presents a dual-loop control scheme based on an integral sliding mode control scheme for the task-space pose error correction in trajectory-tracking of a planar 3-PRP parallel manipulator due to mechanical inaccuracies. The proposed dual-loop control scheme uses redundant sensor feedback, i.e., individual active joint displacements, velocities (at the joint-space level) and, end-effector positions and orientation (at the task-space level) are obtained as feedback signals using appropriate sensors. Using the redundant feedback information, the actual pose errors of the end-effector are computed in the outer-loop (kinematic) control and rectified in joint-space inner-loop (dynamic) control to achieve the given desired task-space trajectory. To demonstrate the efficacy and show complete performance of the controllers, real-time experiments are executed on an in-house fabricated planar 3-PRP parallel manipulator. The experimentation results show that the manipulator tracing performance is considerably improved with the proposed dual-loop control scheme. In addition, the controller parameter sensitivity and robustness analyses are also accomplished.


Dual-loop control Integral sliding mode Task-space control Error compensation Trajectory-tracking control Mechanical inaccuracies Parallel manipulators. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghosal, A.: Robotics: Fundamental concepts and analysis, Oxford University Press (2009)Google Scholar
  2. 2.
    Sabanovic, A., Ohnishi, K.: Motion Control Systems, Wiley (2011)Google Scholar
  3. 3.
    Chen, Y., Dong, F.: Robot machining: recent development and future research issues. Int. J. Adv. Manuf. Technol. 66, 1489–1497 (2013)CrossRefGoogle Scholar
  4. 4.
    Veryha, Y., Kurek, J.: Application of joint error mutual compensation for robot end-effector pose accuracy improvement. J. Intell. Robot. Syst. 36, 315–326 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, X.W., Nof, S.Y.: Error detection and prediction algorithms: Application in robotics. J. Intell. Robot. Syst. 48, 225–252 (2007)CrossRefGoogle Scholar
  6. 6.
    Yu, A., Bonev, I.A., Zsombor-Murray, P.: Geometric approach to the accuracy analysis of a class of 3-DOF planar parallel robots. Mech. Mach. Theory 43, 364–375 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    He, R., Zhao, Y., Yang, S., Yang, S.: Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Trans. Robot. 26, 411–423 (2010)CrossRefGoogle Scholar
  8. 8.
    Kelly, R., Santibanez, V., Loria, A.: Control of robot manipulators in joint space, Springer (2005)Google Scholar
  9. 9.
    Cheah, C.C., Li, X.: Task-Space Sensory feedback control of robot manipulators, Springer (2015)Google Scholar
  10. 10.
    Wang, D., Wu, J., Wang, L., Liu, Y., Yu, G.: A method for designing control parameters of a 3-DOF parallel tool head. Mechatronics 41, 102–113 (2017)CrossRefGoogle Scholar
  11. 11.
    Wang, D., Wu, J., Wang, L., Liu, Y., Yu, G.: Research on the dynamic characteristics of a 3-DOF parallel tool head. Ind. Robot. 44, 28–37 (2017)CrossRefGoogle Scholar
  12. 12.
    Potkonjak, V., Djordjevic, G., Milosavljevic, C., Antic, D., Popovic, D.: Kinematic redundancy and sensor redundancy for enhancement of robot tracking performance. J. Intell. Robot. Syst. 15, 263–289 (1996)CrossRefGoogle Scholar
  13. 13.
    Zubizarreta, A., Marcos, M., Cabanes, I., Pinto, C., Portillo, E.: Redundant sensor based control of the 3RRR parallel robot. Mech. Mach. Theory 54, 1–17 (2012)CrossRefGoogle Scholar
  14. 14.
    Volech, J., Mraz, L., Sika, Z., Valasek, M.: Concepts of robot accuracy enhancement by integrated redundant measurements. Bull. Appl. Mech. 9, 12–17 (2013)Google Scholar
  15. 15.
    Guo, L., Liang, Y., Song, J., Sun, Z., Zhu, J.: Compensation for positioning error of industrial robot for flexible vision measuring system. Eighth International Symposium on Precision Engineering Measurement and Instrumentation, 87592Z (2013)Google Scholar
  16. 16.
    Lang, J., Chen, L.: Dual-loop integral sliding mode control for flexible space manipulator. China Mech. Eng. 22, 1906–1912 (2011)Google Scholar
  17. 17.
    Agarwal, A., Nasa, C., Bandyopadhyay, S.: Dual-Loop Control for Backlash Correction in Trajectory-Tracking of a Planar 3-RRR Manipulator. In: Proceedings of 15Th National Conference on Machines and Mechanisms NacoMM2011, Chennai, pp. 189:1-8 (2011)Google Scholar
  18. 18.
    Karnam, M., Kalla, R., Nag, A., Agarwal, S., Bandyopadhyay, S.: Improved Tracking Performance Using Dual and Double Dual Feedback Loops. Indian Control Conference, Chennai, India (2015)Google Scholar
  19. 19.
    Agarwal, A., Nasa, C., Bandyopadhyay, S.: Dynamic singularity avoidance for parallel manipulators using a task-priority based control scheme. Mech. Mach. Theory 96, 107–126 (2016)CrossRefGoogle Scholar
  20. 20.
    Duarte, F., Ullah, F., Bohn, C.: Modelling and Dual Loop Sliding Mode Control of a Two Flexible-Link Robot to Reduce the Transient Response. In: Proceedings of 24th Mediterranean Conference on Control and Automation, Athens, pp. 280–285 (2016)Google Scholar
  21. 21.
    Lamaury, J., Gouttefarde, M., Chemori, A., Herve, P.E.: Dual-Space Adaptive Control of Redundantly Actuated Cable Driven Parallel Robots. In: Proceedings of International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, pp. 4879–4886 (2016)Google Scholar
  22. 22.
    Slotine, J.J.E., Li, W.: Applied nonlinear control, Prentice Hall (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Mechanical EngineeringIndian Institute of Technology (IIT) IndoreIndoreIndia

Personalised recommendations