Journal of Intelligent & Robotic Systems

, Volume 88, Issue 1, pp 97–127 | Cite as

High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular Acceleration Feedback from a Master-Slave Kalman Filter

Article
  • 171 Downloads

Abstract

Pan-tilt robotic platforms are widely used to point sensor arrays (e.g. cameras, radars and antennas) in certain directions toward the target. Such platforms may suffer from external disturbances due to terrain changes, high-frequency vibrations and sudden shocks, wind and other environmental factors. These disturbances and hence small angular displacements may cause large position errors if the target is too far away. Therefore, high precision stabilization is required for these platforms to converge to the desired orientation and maintain it by rejecting unknown disturbances. In motion control, robust stabilization problem is usually tackled by employing angular acceleration feedback. However, obtaining reliable acceleration information is a challenging task. In this paper, we propose a novel master-slave type Kalman filter algorithm which consists of an extended Kalman filter (EKF) and an inverse Φ-algorithm in a master-slave configuration to estimate reliable angular acceleration signals by fusing 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer data. Performance of the proposed sensor fusion algorithm is evaluated on a high fidelity simulation model by using the estimated accelerations as feedback signals in the stabilization control of a 2-DOF pan-tilt system subject to external disturbances. As the acceleration feedback is incorporated into the control loop, higher stabilization is achieved. The performance of the proposed fusion algorithm is compared to Newton predictor enhanced Kalman filter (NPEKF) and the error state Kalman filter (ErKF). The proposed master-slave Kalman filter outperforms the Newton predictor enhanced Kalman filter whereas the results obtained by the proposed algorithm and the error state Kalman filter are comparable.

Keywords

Angular acceleration Sensor fusion Extended Kalman filter Inverse Φ-algorithm Stabilization Pan-tilt Acceleration control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F.: A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans. Robot. Autom. 15(3), 572–578 (1999)CrossRefGoogle Scholar
  2. 2.
    Wendel, J., Meister, O., Schlaile, C., Trommer, G.F.: An integrated GPS/MEMS IMU navigation system for an autonomous helicopter. Aerosp Sci Technol. 10(6), 527–533 (2006)CrossRefGoogle Scholar
  3. 3.
    Jeong, S.H., Jung, S., Tomizuka, M.: Attitude control of a quad-rotor system using an acceleration-based disturbance observer: an empirical approach. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 916–921 (2012)Google Scholar
  4. 4.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J Basic Eng-T ASME. 82(1), 35–45 (1960)CrossRefGoogle Scholar
  5. 5.
    Kim, A., Golnaraghi, M.F.: A quaternion-based orientation estimation algorithm using an inertial measurement unit. IEEE Position Location and Navigation Symposium. 268–272 (2004)Google Scholar
  6. 6.
    Sabatini, A.M.: Kalman filter based orientation determination using inertial/magnetic sensors: Observability analysis and performance evaluation. Sensors 11(10), 9182–9206 (2011)CrossRefGoogle Scholar
  7. 7.
    Mathieu, P., Denis, G.: Comparison between the unscented Kalman Filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. IEEE Intelligent Vehicles Symposium. 831–835 (2004)Google Scholar
  8. 8.
    Li, W., Wang, J.: Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. J. Navig. 66(1), 99–113 (2013)CrossRefGoogle Scholar
  9. 9.
    Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization. In: Proceedings of the 1999 IEEE International Conference on Robot Localization, pp 1656–1663 (1999)Google Scholar
  10. 10.
    Panich, S.: Indirect Kalman filter in mobile robot application. J. Math. Stat. 6(3), 381–384 (2010)CrossRefGoogle Scholar
  11. 11.
    Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control. 53(5), 1203–1218 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bachmann, E.R., McGhee, R.B., Yun, X., Zyda, M.J.: Inertial and magnetic posture tracking for inserting humans into networked virtual environments. Proc ACM Symp Virtual Real Softw Technol. 9–16 (2001)Google Scholar
  13. 13.
    Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot. 1–7 (2011)Google Scholar
  14. 14.
    Gomes, M.S., Ferreira, A.M.: Gun-turret modelling and control. ABCM Symposium Series in Mechatronics. 2, 60–67 (2005)Google Scholar
  15. 15.
    Kumar, P., Dick, A., Sheng, T.S.: Real time target tracking with pan tilt zoom camera. Digital Image Computing: Techniques and Applications. 492–497 (2009)Google Scholar
  16. 16.
    Davis, J., Chen, X.: Calibrating pan-tilt cameras in wide-area surveillance networks. IEEE International Conference on Computer Vision. 144–149 (2003)Google Scholar
  17. 17.
    Lee, C.H., Kim, S.H., Kang, S.C., Kim, M.S., Kwak, Y.K.: Double-track mobile robot for hazardous environment applications. Adv. Robot. 17(5), 447–459 (2003)CrossRefGoogle Scholar
  18. 18.
    Schmidt, P.B., Lorenz, R.D.: Design principles and implementation of acceleration feedback to improve performance of dc drives. IEEE Trans. Ind. Appl. 28(3), 594–599 (1992)CrossRefGoogle Scholar
  19. 19.
    Deur, J., Peri, N.: A comparative study of servosystems with acceleration feedback. IEEE Industry Applications Conference. 3, 1533–1540 (2000)Google Scholar
  20. 20.
    Kobayashi, H., Katsura, S., Ohnishi, K.: An analysis of parameter variations of disturbance observer for haptic motion control. IECON. 1907–1912 (2005)Google Scholar
  21. 21.
    Rubaai, A., Ofoli, A.R., Cobbinah, D.: Dsp-based real-time implementation of a hybrid H∞ adaptive fuzzy tracking controller for servo-motor drives. IEEE Trans. Ind. Appl. 43(2), 476–484 (2007)CrossRefGoogle Scholar
  22. 22.
    Rezac, M., Hurac, Z.: Vibration rejection for inertially stabilized double gimbal platform using acceleration feedforward. IEEE International Conference on Control Applications. 363–368 (2011)Google Scholar
  23. 23.
    Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6(2), 16–28 (1987)CrossRefGoogle Scholar
  24. 24.
    Xu, W., Han, J., Tso, S.: Experimental study of contact transition control incorporating joint acceleration feedback. IEEE/ASME Trans. Mechatron. 5(3), 292–301 (2000)CrossRefGoogle Scholar
  25. 25.
    Han, J., He, Y., Xu, W.: Angular acceleration estimation and feedback control: an experimental investigation. Mechatronics 17(9), 524–532 (2007)CrossRefGoogle Scholar
  26. 26.
    Chen, J.H., Lee, S.C., DeBra, D.B.: Gyroscope free strapdown inertial measurement unit by six linear accelerometers. J. Guid. Control. Dyn. 17(2), 286–290 (1994)CrossRefGoogle Scholar
  27. 27.
    Edwan, E., Knedlik, S., Loffeld, O.: Constrained angular motion estimation in a gyro-free IMU. IEEE Trans. Aerosp. Electron. Syst. 47(1), 596–610 (2011)CrossRefGoogle Scholar
  28. 28.
    Edwan, E., Knedlik, S., Loffeld, O.: Angular motion estimation using dynamic models in a gyro-free inertial measurement unit. Sensors 12, 5310–5327 (2012)CrossRefGoogle Scholar
  29. 29.
    Petkov, P., Slavov, T.: Stochastic modeling of MEMS inertial sensors. Cybern. Inf. Technol. 10 (2), 31–40 (2010)Google Scholar
  30. 30.
    Crassidis, J.L., Markley, F.L., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control. Dyn. 30(1), 12–28 (2007)CrossRefGoogle Scholar
  31. 31.
    Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. Control. Dyn. 5(5), 417–429 (1982)CrossRefGoogle Scholar
  32. 32.
    Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58 (15-16), 1–35 (2006)Google Scholar
  33. 33.
    Shalom, Y.B., Li, X.R., Kirubarajan, T.: Estimation with applications to tracking and navigation, John Wiley and Sons (2001)Google Scholar
  34. 34.
    Collinson, R.P.G.: Introduction to avionics systems Springer (2003)Google Scholar
  35. 35.
    Wang, K., Yong Li, C.R.: Practical approaches to Kalman filtering with time-correlated measurement errors. Trans. Aerosp. Electron. Syst. 48(2), 1669–1681 (2012)CrossRefGoogle Scholar
  36. 36.
    Bryson, A.E., Henrikson, L.J.: Estimation using sampled data containing sequentially correlated noise. J. Spacecr. Rocket. 5(6), 662–665 (1968)CrossRefGoogle Scholar
  37. 37.
    Petovello, M.G., O’Keefe, K., Lachapelle, G.: Consideriation of time-correlated errors in a Kalman filter applicable to GNSS. J. Geod. 83(1), 51–56 (2009)CrossRefGoogle Scholar
  38. 38.
    Petovello, M.G., O’Keefe, K., Lachapelle, G., Cannon, M.E.: Erratum to: Consideriation of time-correlated errors in a Kalman filter applicable to GNSS. J. Geod. 85, 367–368 (2011)CrossRefGoogle Scholar
  39. 39.
    Tao, G., Ma, X.: Backlash compensation for multivariable nonlinear systems with actuator dynamics, IEEE Decis Contr. 3382–3387 (1999)Google Scholar
  40. 40.
    Hori, Y.: Disturbance suppression on an acceleration control type DC servo system. IEEE Power Electron. 222–229 (1988)Google Scholar
  41. 41.
    Tian, F., Craig, K., Nagurka, M.: Disturbance attenuation in a magnetic levitation system with acceleration feedback. IEEE International Conference on Industrial Technology. 59–64 (2011)Google Scholar
  42. 42.
    Craig, K.: Acceleration feedbackGoogle Scholar
  43. 43.
    Setoodeh, P., Khayatian, A., Farjah, E.: Attitude estimation by separate-bias Kalman filter-based data fusion. JNAV 57, 261–273 (2004)Google Scholar
  44. 44.
    Madyastha, V.K., Ravindra, V.C., Mallikarjunan, S., Goyal, A.: Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation. Guidance, Navigation and Control Conference (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations