Journal of Intelligent & Robotic Systems

, Volume 87, Issue 2, pp 231–246 | Cite as

A New Directional-Intent Recognition Method for Walking Training Using an Omnidirectional Robot

Open Access
Article
  • 379 Downloads

Abstract

In order to avoid being bedridden, a preemptive walking rehabilitation is essential for people who lose their walking ability because of illness or accidents. In a previous study, we developed an omnidirectional walking training robot (WTR), the effectiveness of which in rehabilitation was validated by clinical testing. In the primary stage of the walking training, the WTR guides the user to follow the predesigned therapy program to conduct the walking training. This study focuses on the later stages of training in which the user plays an active role of determining the training by himself/herself, and the WTR must follow the user’s intent. However, identifying a user’s intent is challenging. In the present study, we address this problem by introducing a directional-intent identification method based on a distance-type fuzzy reasoning algorithm. The effectiveness of the directional identification method is experimentally confirmed.

References

  1. 1.
    United Nations: Home-assistant robot for an aging society. Department of Economic and Social Affairs, Population Division, World Population Prospects. Revision (2015)Google Scholar
  2. 2.
    Chen, B.: Trends in disability in a super-aging society: Adapting the future elderly model to japan 143rd APHA Annual Meeting and Exposition (October 31-November 4, 2015). APHA, 2015Google Scholar
  3. 3.
    Guralnik, J.M., Fried, L.P., Salive, M.E.: Disability as a public health outcome in the aging population. Annu. Rev. Public Health 17(1), 25–46 (1996)CrossRefGoogle Scholar
  4. 4.
    Lee, I.-M., Buchner, D.M.: The importance of walking to public health. Med. Sci. Sports Exerc. 40(7 Suppl), S512—8 (2008)Google Scholar
  5. 5.
    Bernhardt, J., Churilov, L., Dewey, H., Lindley, R.I., Moodie, M., Collier, J., Langhorne, P., Thrift, A.G., Donnan, G.: Statistical analysis plan (sap) for a very early rehabilitation trial (avert): an international trial to determine the efficacy and safety of commencing out of bed standing and walking training (very early mobilization) within 24 h of stroke onset vs. usual stroke unit care. Int. J. Stroke 10 (1), 23–24 (2015)CrossRefGoogle Scholar
  6. 6.
    Karttunen, A.H., Kallinen, M., Peurala, S.H., Häkkinen, A: Walking training and functioning among elderly persons with stroke: Results of a prospective cohort study. PM&R 7(12), 1205–1214 (2015)CrossRefGoogle Scholar
  7. 7.
    Pyo, S-H, Min-Gyun, O., Yoon, J-W: Development of an active haptic cane for gait rehabilitation 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4464–4469. IEEE, p 2015Google Scholar
  8. 8.
    Maguire, C., Sieben, J.M., Scheidhauer, H., Romkes, J., Suica, Z., de Bie, R.A.: The effect of crutches, an orthosis theratogs, and no walking aids on the recovery of gait in a patient with delayed healing post hip fracture: A case report. Physiotherapy theory and practice, p. 1–13 (2016)Google Scholar
  9. 9.
    Mun, K.-R., Guo, Z., Yu, H.: Development and evaluation of a novel overground robotic walker for pelvic motion support 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), p. 95–100. IEEE, p 2015Google Scholar
  10. 10.
    Walsh, C.J., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Rob. 4(03), 487–506 (2007)CrossRefGoogle Scholar
  11. 11.
    Kyousuke, G., Kotani, N., Hiroyuki, F., Kazuya, S., Reiko, T., Arisa, K., Satoshi, K., Kazuhiko, S., Etuji, S., Masatoshi, N., et al.: Effectiveness of the single-joint halⓇ robot suit for rehabilitation after orthopedic surgery. Physiotherapy 101, e806—e807 (2015)CrossRefGoogle Scholar
  12. 12.
    Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, control and performance of ricewrist: A force feedback wrist exoskeleton for rehabilitation and training. Int. J. Robot. Res. 27(2), 233–251 (2008)CrossRefGoogle Scholar
  13. 13.
    Meuleman, J., van Asseldonk, E., van Oort, G., Rietman, J., van der Kooij, H.: Lopes ii—design and evaluation of an admittance controlled gait training robot with shadow-leg approach (2015)Google Scholar
  14. 14.
    Jin, X., Cui, X., Agrawal, S.K.: Design of a cable-driven active leg exoskeleton (c-alex) and gait training experiments with human subjects 2015 IEEE International Conference on Robotics and Automation (ICRA), p. 5578–5583. IEEE (2015)Google Scholar
  15. 15.
    Alamdari, A., Krovi, V.: Design and analysis of a cable-driven articulated rehabilitation system for gait training. Journal of Mechanisms and Robotics (2016)Google Scholar
  16. 16.
    Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, MG.: Motion control for an intelligent walking support machine. ICIC Express Lett. 6(1), 145–149 (2012)Google Scholar
  17. 17.
    Wang, S.Y., Inoue, H., Kawata, K., Inoue, Y., Nagano, M., Ino, S., Ishida, K., Kimura, T.: Developing the omni-directional mobile walker and verifying its effect of increase in the muscle power Proceedings of the JSME Symposium on Walfare Engineering, p. 176–177 (2007)Google Scholar
  18. 18.
    Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., Prugnarola, J., Stuart, R., Arango, R., Leahey, M., et al.: Smart portable rehabilitation devices. J. Neuroeng. Rehabil. 2(1), 1 (2005)CrossRefGoogle Scholar
  19. 19.
    Ishida, K., Wang, S.Y., Nagano, T., Kishi, T.: Development of an all-way mobile walker. J. Phys. Med. 19(4), 246–250 (2008)Google Scholar
  20. 20.
    Riman, C.F., Peralta, H., Monacelli, E., Alayli, Y., Hajj, A.E., Mougharbel, I.: A multi-interface platform system for assistance and evaluation of disabled people, applied bionics and biomechanics. Appl. Bionics Biomech. 8(1), 55–66 (2011)CrossRefGoogle Scholar
  21. 21.
    Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D.: Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 595–604 (2012)CrossRefGoogle Scholar
  22. 22.
    Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A: An meg-based brain–computer interface (bci). Neuroimage 36(3), 581–593 (2007)CrossRefGoogle Scholar
  23. 23.
    Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fmri-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22(14), 1333–1338 (2012)CrossRefGoogle Scholar
  24. 24.
    Lee, J-H, Ryu, J., Jolesz, F.A., Cho, Z-H, Yoo, S-S: Brain–machine interface via real-time fmri: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450(1), 1–6 (2009)CrossRefGoogle Scholar
  25. 25.
    Naseer N, Hong, K-S: fnirs-based brain-computer interfaces: a review. Frontiers in human neuroscience, 9, 2015Google Scholar
  26. 26.
    Walter, M.R., Antone, M., Chuangsuwanich, E., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Friedman, Y., Glass, J., How, J.P., et al.: A situationally aware voice-commandable robotic forklift working alongside people in unstructured outdoor environments. J. Field Rob. 32(4), 590–628 (2015)CrossRefGoogle Scholar
  27. 27.
    Kofman, J., Xianghai, W., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Ind. Electron. 52(5), 1206–1219 (2005)CrossRefGoogle Scholar
  28. 28.
    Bascetta, L., Ferretti, G., Rocco, P., Ardö, H, Bruyninckx, H., Demeester, E., Di Lello, E.: Towards safe human-robot interaction in robotic cells: an approach based on visual tracking and intention estimation 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p. 2971–2978. IEEE (2011)Google Scholar
  29. 29.
    Taghvaei, S., Hirata, Y., Kosuge, K.: Control of a passive walker using a depth sensor for user state estimation 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 1639–1645. IEEE (2011)Google Scholar
  30. 30.
    Brescianini, Dario, Jung, Jun-Young, Jang, In-Hun, Park, Hyun Sub, Robert, Riener: Ins/ekf-based stride length, height and direction intent detection for walking assistance robots 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 1–5. IEEE (2011)Google Scholar
  31. 31.
    Chan, F.H.Y., Yang, Y-S, Lam, F.K., Zhang, Y-T, Parker, P.A.: Fuzzy emg classification for prosthesis control. IEEE Trans. Rehabil. Eng. 8(3), 305–311 (2000)CrossRefGoogle Scholar
  32. 32.
    Hussein, S.E., Granat, M.H.: Intention detection using a neuro-fuzzy emg classifier. IEEE Eng. Med. Biol. Mag. 21(6), 123–129 (2002)CrossRefGoogle Scholar
  33. 33.
    Yokono, J., Hashimoto, S.: Center of gravity sensing for motion interface 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, vol. 2, p. 1113–1118. IEEE (1998)Google Scholar
  34. 34.
    Wasson, G., Sheth, P., Huang, C., Ledoux, A., Alwan, M.: A physics-based model for predicting user intent in shared-control pedestrian mobility aids 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 2, p. 1914–1919. IEEE (2004)Google Scholar
  35. 35.
    Wakita, K., Huang, J., Di, P., Sekiyama, K., Fukuda, T.: Human-walking-intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans. Mechatron. 18(1), 285–296 (2013)CrossRefGoogle Scholar
  36. 36.
    Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. Journal of Artificial Intelligence and Soft Computing Research 5(2), 121–139 (2015)CrossRefGoogle Scholar
  37. 37.
    Raza, M.Q., Khosravi, A.: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sust. Energ. Rev. 50, 1352–1372 (2015)CrossRefGoogle Scholar
  38. 38.
    Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the arma, arima, and the autoregressive artificial neural network models in forecasting the monthly inflow of dez dam reservoir. J. Hydrol. 476, 433–441 (2013)CrossRefGoogle Scholar
  39. 39.
    Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016)CrossRefGoogle Scholar
  40. 40.
    Valipour, M.: Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J. Agric. Sci. 4(12), 125 (2012)Google Scholar
  41. 41.
    Khasraghi, M.M., Sefidkouhi, M.A.G., Valipour, M.: Simulation of open-and closed-end border irrigation systems using sirmod. Arch. Agron. Soil Sci. 61(7), 929–941 (2015)CrossRefGoogle Scholar
  42. 42.
    Valipour, M., Sefidkouhi, M.A.G., Eslamian, S.: Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology 5(1), 51–70 (2015)CrossRefGoogle Scholar
  43. 43.
    Adȧscȧliṫei, F, Doroftei, I.: Practical applications for mobile robots based on mecanum wheels-a systematic survey. Gh. Asachi Technical University of Iasi, Mechanical Engineering Faculty, Theory of Mechanisms and Robotics Department, B-dul D, Mangeron, p. 61–63 (2011)Google Scholar
  44. 44.
    Wang, Y., Wang, S., Tan, R., Jiang, Y., Ishida, K., Fujie, M.G.: Improving the motion performance for an intelligent walking support machine by rls algorithm. ICIC Express Lett. 7(4), 176–177 (2013)Google Scholar
  45. 45.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant Proceedings of the Institution of Electrical Engineers, volume 121, pages 1585–1588. IET (1974)Google Scholar
  46. 46.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)MATHCrossRefGoogle Scholar
  47. 47.
    Maeda, M., Murakami, S.: A self-tuning fuzzy controller. Fuzzy Sets Syst. 51(1), 29–40 (1992)CrossRefGoogle Scholar
  48. 48.
    Mizumoto, M., Zimmermann, H.-J.: Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8 (3), 253–283 (1982)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Mizumoto, M.: Fuzzy controls under various fuzzy reasoning methods. Inf. Sci. 45(2), 129–151 (1988)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Wang, S., Tsuchiya, T., Mizumoto, M.: Distance-type fuzzy reasoning method. Journal of Biomedical Fuzzy Systems Association 1(1), 61–78 (1999)Google Scholar
  51. 51.
    Chaudhur, B.B., Rosenfeld, A.: On a metric distance between fuzzy sets. Pattern Recogn. Lett. 17(11), 1157–1160 (1996)CrossRefGoogle Scholar
  52. 52.
    Lindblad, J., Sladoje, N.: Linear time distances between fuzzy sets with applications to pattern matching and classification. IEEE Trans. Image Process. 23(1), 126–136 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.School of Systems EngineeringKochi University of TechnologyKami, KochiJapan

Personalised recommendations