Journal of Intelligent & Robotic Systems

, Volume 87, Issue 2, pp 291–312 | Cite as

Planning Stable and Efficient Paths for Reconfigurable Robots On Uneven Terrain

  • Mohammad Norouzi
  • Jaime Valls Miro
  • Gamini Dissanayake


An analytical strategy to generate stable paths for reconfigurable mobile robots such as those equipped with manipulator arms and/or flippers, operating in an uneven environment whilst also meeting additional navigational objectives is hereby proposed. The suggested solution looks at minimising the length of the traversed path and the energy expenditure in changing postures, and also accounts for additional constraints in terms of sensor visibility and traction. This is particularly applicable to operations such as search and rescue where observing the environment for locating victims is the major objective, although this technique can be generalised to incorporate other potentially conflicting objectives (e.g. maximising ground clearance for a legged robot). The validity of the proposed approach is evaluated with two popular graph-based planners (A* and RRT) on a multi-tracked robot fitted with a manipulator arm and a range camera. Two challenging 3D terrain data sets have been employed: one obtained whilst operating the robot in a mock-up urban search and rescue (USAR) arena, and a second one, a reference on-line data set acquired on the quasi-outdoor rover testing facility at the University of Toronto Institute for Aerospace Studies (UTIAS).


Stability Mechanical Reconfiguration Path planning Automation Rescue robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adolf, F., Hirschmuller, H.: Meshing and simplification of high resolution urban surface data for uav path planning. J. Intell. Robot. Syst. 61(4), 169–180 (2011)CrossRefGoogle Scholar
  2. 2.
    Besseron, G., Grand, C., Amar, F.B., Bidaud, P.: Decoupled Control of the High Mobility Robot Hylos Based on a Dynamic Stability Margin In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 22–23. Nice, France (2008)Google Scholar
  3. 3.
    Chilian, A., Hirschmuller, H.: Stereo camera based navigation of mobile robots on rough terrain In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571–4576, St. Louis, USA (2009)Google Scholar
  4. 4.
    Corporation, M.: Kinect sensor device (2010)Google Scholar
  5. 5.
    Das, A., Diu, M., Mathew, N., Scharfenberger, C., Servos, J., Wong, A., Zelek, J., Clausi, D., Waslander, S.: Mapping, planning, and sample detection strategies for autonomous exploration. J. Field Rob. 31(1), 75–106 (2014)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Freitas, G., Gleizer, G., Lizarralde, F., Hsu, L.: Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest. J. Field Rob. 27(2), 197–216 (2010)Google Scholar
  8. 8.
    Gingras, D., Dupuis, E., Payer, G., de Lafontaine, J.: Path Planning Based on Fluid Mechanics for Mobile Robots Using Unstructured Terrain Models In: Proc. IEEE International Conference on Robotics and Automation, pp 1978–1984. Anchorage, Alaska, USA (2010)Google Scholar
  9. 9.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  10. 10.
    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016a)Google Scholar
  11. 11.
    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46(3), 334–344 (2016b)Google Scholar
  12. 12.
    Iagnemma, K., Dubowsky, S.: Mobile Robot in Rough Terrain, Volume 12 Springer Tracts in Advanced Robotics, Berlin, Germany (2004)Google Scholar
  13. 13.
    Iizuka, K., Sasaki, T., Yamano, M., Kubota, T.: Development of grousers with a tactile sensor for wheels of lunar exploration rovers to measure sinkage. Int. J. Adv. Robot. Syst. 11(49), 1–7 (2014)Google Scholar
  14. 14.
    iRobot Corporation: irobot 510 packbot (2015)Google Scholar
  15. 15.
    Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26, 635–646 (2010)CrossRefGoogle Scholar
  16. 16.
    Kavraki, L.E., vestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 556–580 (1996)CrossRefGoogle Scholar
  17. 17.
    Kessens, C., Smith, D., Osteen, P.: A Framework for Autonomous Self-Righting of a Generic Robot on Sloped Planar Surfaces In: Proc. IEEE International Conference on Robotics and Automation, pp 4724–4729. Minnesota, USA (2012)Google Scholar
  18. 18.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5 (1), 90–98 (1986)CrossRefGoogle Scholar
  19. 19.
    Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. J. Sens. 12(1), 1437–1454 (2012)CrossRefGoogle Scholar
  20. 20.
    Kim, J., Kim, M., Park, J.: Improvement of humanoid walking control by compensating actuator elasticity Proc. IEEE International Conference on Humanoid Robots (Humanoids), pp. 29–34, Cancun, Mexico (2016)Google Scholar
  21. 21.
    LaValle, S.: Rapidly-Exploring Random Trees: A New Tool for Path Planning Technical Report. Iowa State University, Dept. of Computer Science (1998)Google Scholar
  22. 22.
    LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  23. 23.
    Liu, Y., Liu, G.: Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Trans. Mechatron. 15(4), 623–635 (2010)CrossRefGoogle Scholar
  24. 24.
    Moosavian, A., Alipour, K.: On the dynamic tip-over stability of wheeled mobile manipulators. Int. J. Robot. Autom. 22(4), 322–328 (2007)Google Scholar
  25. 25.
    Morales, J., Martinez, J.L., Mandow, A., Seron, J., Garcia-Cerezo, A.J.: Static tip-over stability analysis for a robotic vehicle with a single-axle trailer on slopes based on altered supporting polygons. IEEE/ASME Trans. Mechatron. 18(2), 697–705 (2013)CrossRefGoogle Scholar
  26. 26.
    Norouzi, M., Miro, J.V., Dissanayake, G.: Planning high-visibility stable paths for reconfigurable robots on uneven terrain IEEE/RSJ Proc. International Conference on Intelligent Robots and Systems, pp. 2844–2849, Portugal (2012)Google Scholar
  27. 27.
    Norouzi, M., Miro, J.V., Dissanayake, G.: Planning Stable and Efficient Paths for Articulated Mobile Robots on Challenging Terrains Proc. Australasian Conference on Robotics and Automation, p 10. UNSW, Sydney, Australia (2013a)Google Scholar
  28. 28.
    Norouzi, M., Miro, J.V., Dissanayake, G.: A Statistical Approach for Uncertain Stability Analysis of Mobile Robots In: Proc. IEEE International Conference on Robotics and Automation, pp 191–196. Karlsruhe, Germany (2013b)Google Scholar
  29. 29.
    Okada, Y., Nagatani, K., Yoshida, K., Tadokoro, S., Yoshida, T., Koyanagi, E.: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J. Field Rob. 28(6), 875–893 (2011)CrossRefGoogle Scholar
  30. 30.
    Papadopoulos, E., Rey, D.: The force angle measure of tipover stability margin for mobile manipulatiors. Veh. Syst. Dyn. 33(1), 29–48 (2000)CrossRefGoogle Scholar
  31. 31.
    Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., Poppinga, J.: Online 3D SLAM by registration of large planar surface segments and closed form pose-graph relaxation. J. Field Rob. 27(1), 52–84 (2010)CrossRefGoogle Scholar
  32. 32.
    Pellenz, J., Gossow, D., Paulus, D.: Robbie: a fully autonomous robot for robocuprescue. Adv. Robot. 23, 1159–1177 (2009)CrossRefGoogle Scholar
  33. 33.
    Roan, P., Burmeister, A., Rahimi, A., Holz, K., Hooper, D.: Real-World Validation of Three Tipover Algorithms for Mobile Robots In: Proc. IEEE International Conference on Robotics and Automation, pp 4431–4436. Anchorage, Alaska, USA (2010)Google Scholar
  34. 34.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2003)Google Scholar
  35. 35.
    Smith, R.: Open dynamics engine, ( (2005)
  36. 36.
    Sun, C., He, W., Ge, W., Chang, C.: Adaptive neural network control of biped robots. IEEE Transactions on Systems, Man, and Cybernetics Systems. doi:10.1109/TSMC.2016.2557223(2016)
  37. 37.
    Tong, C.H., Gingras, D., Larose, K., Barfoot, T.D., Dupuis, E.: The canadian planetary emulation terrain 3D mapping dataset. Int. J. Robot. Res. 32(4), 389–395 (2013)CrossRefGoogle Scholar
  38. 38.
    Vukobratovic, M.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  39. 39.
    Wirth, S., Pellenz, J.: Exploration Transform: a Stable Exploring Algorithm for Robots in Rescue Environments In: Proc. IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR), pp 1–5. Rome, Italy (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mohammad Norouzi
    • 1
  • Jaime Valls Miro
    • 1
  • Gamini Dissanayake
    • 1
  1. 1.Faculty of Engineering and ITUniversity of Technology, Sydney (UTS)SydneyAustralia

Personalised recommendations