Journal of Intelligent & Robotic Systems

, Volume 87, Issue 1, pp 187–207 | Cite as

Performance Comparison of Controllers with Fault-Dependent Control Allocation for UAVs

  • Mikkel Eske Nørgaard Sørensen
  • Søren Hansen
  • Morten Breivik
  • Mogens Blanke
Article

Abstract

This paper combines fault-dependent control allocation with three different control schemes to obtain fault tolerance in the longitudinal control of unmanned aerial vehicles. The paper shows that fault-dependent control allocation is able to accommodate actuator faults that would otherwise be critical and it makes a performance assessment for the different control algorithms: an \(\mathcal {L}_{1}\) adaptive backstepping controller; a robust sliding mode controller; and a standard PID controller. The actuator faults considered are the partial to total loss of the elevator, which is a critical component for the safe operation of unmanned aerial vehicles. During nominal operation, only the main actuator, namely the elevator, is active for pitch control. In the event of a partial or total loss of the elevator, fault-dependent control allocation is used to redistribute control to available healthy actuators. Using simulations of a Cessna 182 aircraft model, controller performance and robustness are evaluated by metrics that assess control accuracy and energy use. System uncertainties are investigated over an envelope of pertinent variation, showing that sliding mode and \(\mathcal {L}_{1}\) adaptive backstepping provide robustness, where PID control falls short. Additionally, a key finding is that the fault-dependent control allocation is instrumental when handling actuator faults.

Keywords

Nonlinear longitudinal motion control Fault-tolerant UAV control \(\mathcal {L}_{1}\) adaptive backstepping control Sliding mode control Fault-dependent control allocation Performance metrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, C., Lombaerts, T., Smaili, H.: Fault tolerant flight control: A benchmark challenge. Springer (2010)Google Scholar
  2. 2.
    Zolghadri, A.: Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities. Prog. Aerosp. Sci. 53, 18–29 (2012)CrossRefGoogle Scholar
  3. 3.
    Qi, X., Qi, J., Theilliol, D., Zhang, Y., Han, J., Song, D., Hua, C.: A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. J. Intell. Robot. Syst. 73(1), 535–555 (2014)CrossRefGoogle Scholar
  4. 4.
    Goupil, P.: Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy. Control. Eng. Pract. 18(9), 1110–1119 (2012)CrossRefGoogle Scholar
  5. 5.
    Alcorta-Garcia, E., Zolghadri, A., Goupil, P.: A nonlinear observer-based strategy for aircraft oscillatory failure detection: A380 case study. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2792–2806 (2011)CrossRefGoogle Scholar
  6. 6.
    Hansen, S., Blanke, M.: Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences. In: Proceedings of the 2013 International Conference on Unmanned Aircraft System (ICUAS), Atlanta, USA (2013)Google Scholar
  7. 7.
    Efimov, D., Cieslak, J., Zolghadri, A., Henry, D.: Actuator fault detection in aircraft systems: Oscillatory failure case study. Annu. Rev. Control. 37, 180–190 (2013)CrossRefGoogle Scholar
  8. 8.
    Blanke, M., Hansen, S.: Towards Self-Tuning Residual Generators for UAV control Surface Fault Diagnosis. In: Proceedings of the 2nd International Conference on Control and Fault-Tolerant Systems, Nice, France (2013)Google Scholar
  9. 9.
    Hansen, S., Blanke, M.: Diagnosis of airspeed measurement faults for unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 50(1), 224–239 (2014)CrossRefGoogle Scholar
  10. 10.
    Shtessel, Y.: Sliding mode control and observation. Birkhauser (2013)Google Scholar
  11. 11.
    Edwards, C., Spurgeon, S.K.: Sliding mode control: Theory and applications. Taylor and Francis Ltd (1998)Google Scholar
  12. 12.
    Hovakimyan, N., Cao, C.: \(\mathcal {L}_{1}\) adaptive control theory: Guaranteed robustness with fast adaptation. SIAM (2010)Google Scholar
  13. 13.
    Espinoza, T., Dzul, A., Lozano, R., Parada, P.: Backstepping - sliding mode controllers applied to a fixed-wing UAV. J. Intell. Robot. Syst. 73(1), 67–79 (2014)CrossRefGoogle Scholar
  14. 14.
    Edwards, C., Tan, C.P.: Fault Tolerant Control Using Sliding Mode Observers. In: Proceedings of the IEEE Conference on Decision and Control, Nassau, Bahamas (2004)Google Scholar
  15. 15.
    Alwi, H., Edwards, C.: Fault tolerant control of a civil aircraft using a sliding mode based scheme. In: Proceedings of the IEEE Conference on Decision and Control and European Control Conference, Seville, Spain (2005)Google Scholar
  16. 16.
    Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44(7), 1859 –1866 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Alwi, H., Edwards, C., Stroosma, O., Mulder, J.A.: Simona flight simulator implementation of a fault tolerant sliding mode scheme with on-line control allocation. In: Proceedings of the American Control Conference, Seattle, USA (2008)Google Scholar
  18. 18.
    Patel, V.V., Wise, K.A., Hovakimyan, N., Cao, C., Lavretsky, E.: \(\mathcal {L}_{1}\) Adaptive controller for tailless unstable aircraft in the presence of unknown actuator failures. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Hilton Head South Carolina, USA (2007)Google Scholar
  19. 19.
    Lee, C.-H., Tahk, M.-J., Jun, B.-E.: Autopilot design for an agile missile using \(\mathcal {L}_{1}\) adaptive backstepping control. In: Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences Brisbane, Australia (2012)Google Scholar
  20. 20.
    Johansen, T.A., Fossen, T.I.: Control allocation - A survey. Automatica 49(5), 1087–1103 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Boskovic, J.D., Mehra, R.K.: Control Allocation in overactuated aircraft under position and rate limiting. In: Proceedings of the American Control Conference Anchorage, USA (2002)Google Scholar
  22. 22.
    Liu, K., Zhu, J., Yu, B.: Longitudinal controller design for a fighter aircraft using \(\mathcal {L}_{1}\) adaptive backstepping. In: Proceedings of the World Congress on Intelligent Control and Automation Taipei, Taiwan (2011)Google Scholar
  23. 23.
    Sørensen, M.E.N., Breivik, M.: UAV fault-tolerant control by combined \(\mathcal {L}_{1}\) adaptive backstepping and fault-dependent control allocation. In: Proceedings of the IEEE Multi-Conference on Systems and Control, Sydney, Australia (2015)Google Scholar
  24. 24.
    Edwards, C., Alwi, H., Hamayun, M.T.: Integral sliding mode fault tolerant control incorporating on-line control allocation. In: Proceedings of the 11th International Workshop on Variable Structure Systems Mexico City, Mexico (2010)Google Scholar
  25. 25.
    Hamayun, M.T., Alwi, H., Edwards, C.: An output integral sliding mode FTC scheme using control allocation. In: Proceedings of the 50th IEEE Conference on Decision Orlando, USA (2011)Google Scholar
  26. 26.
    Bajodah, A., Tariq, H., Pakki, K., Chandra, B., Ahmed, R., Gu, D.-W.: Fault tolerant control of aircraft actuating surfaces using generalized DI and integral SM control. J. Intell. Robot. Syst. 69(1), 181–188 (2013)CrossRefGoogle Scholar
  27. 27.
    Ducard, G.J.J: Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles. Springer-Verlag (2009)Google Scholar
  28. 28.
    Stevens, B.L., Lewis, F.L.: Aircraft control and simulation. John Wiley and Sons (2003)Google Scholar
  29. 29.
    Sanseverinati, D.: Identification and fault diagnosis for autonomous aircraft. MSc Thesis. Dept. of Electrical Eng., Technical University of Denmark (2010)Google Scholar
  30. 30.
    Sørensen, M.E.N.: Fault-Tolerant Control for Unmanned Aerial Vehicle. MSc thesis. Dept. of Electrical Eng., Technical University of Denmark (2014)Google Scholar
  31. 31.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M: Diagnosis and fault-tolerant control. Springer (2006)Google Scholar
  32. 32.
    Roskam, J.: Airplane flight dynamics and automatic flight controls. DARcorporation (2003)Google Scholar
  33. 33.
    Khalil, H.K.: Nonlinear systems. Prentice Hall (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mikkel Eske Nørgaard Sørensen
    • 1
  • Søren Hansen
    • 2
  • Morten Breivik
    • 1
  • Mogens Blanke
    • 1
    • 2
  1. 1.Centre for Autonomous Marine Operations and Systems, Department of Engineering CyberneticsNorwegian University of Science and Technology - NTNUTrondheimNorway
  2. 2.Automation and Control Group, Department of Electrical EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations