Advertisement

Trajectory Planning for Communication Relay Unmanned Aerial Vehicles in Urban Dynamic Environments

  • Pawel Ladosz
  • Hyondong Oh
  • Wen-Hua Chen
Article

Abstract

This paper proposes an optimal positioning and trajectory planning algorithm for unmanned aerial vehicles (UAVs) to improve a communication quality of a team of ground mobile nodes (vehicles) in a complex urban environment. In particular, a nonlinear model predictive control (NMPC)-based approach is proposed to find an efficient trajectory for UAVs with a discrete genetic algorithm while considering the dynamic constraints of fixed-wing UAVs. The advantages of using the proposed NMPC approach and the communication performance metrics are investigated through a number of scenarios with different horizon steps in the NMPC framework, the number of UAVs used, heading rates and speeds.

Keywords

Airborne communication relay Genetic algorithm Kinematic constraints Nonlinear model predictive control Unmanned aerial vehicles Urban environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Press, D.G.: Urban warfare: Options, problems and the future (1999)Google Scholar
  2. 2.
    Ibrahim, A.S., Seddik, K.G., Liu, K.J.R.: Improving connectivity via relays deployment in wireless sensor networks. GLOBECOM - IEEE Global Telecommunications Conference, 1159–1163 (2007)Google Scholar
  3. 3.
    De Freitas, E.P., Heimfarth, T., Netto, I.F., Eduardo Lino, C., Pereira, C.E., Ferreira, A.M., Wagner, F.R., Larsson, T.: UAV relay network to support WSN connectivity. International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 309–314 (2010)Google Scholar
  4. 4.
    Gil, S., Schwager, M., Julian, B. J., Rus, D.: Optimizing communication in air-ground robot networks using decentralized control. IEEE International Conference on Robotics and Automation, 1964–1971 (2010)Google Scholar
  5. 5.
    Dixon, C., Frew, E.W.: Optimizing cascaded chains of unmanned aircraft acting as communication relays. IEEE J. Sel. Areas Commun. 30(5), 883–898 (2012)CrossRefGoogle Scholar
  6. 6.
    Ho, D.-T., Grotli, E.I., Sujit, P.B., Johansen, T.A., De Sousa, J.B.: Performance evaluation of cooperative relay and Particle Swarm Optimization path planning for UAV and wireless sensor network. IEEE Globecom Workshops, 1403–1408 (2013)Google Scholar
  7. 7.
    Carfang, A.J., Wagle, N., Frew, E.W.: Improving data ferrying by iteratively learning the radio frequency environment. IEEE International Conference on Intelligent Robots and Systems, (Iros), 1182–1188 (2014)Google Scholar
  8. 8.
    Basu, P., Redi, J., Shurbanov, V.: Coordinated flocking of UAVs for improved connectivity of mobile ground nodes. IEEE Military Communications Conference 3, 1628–1634 (2004)Google Scholar
  9. 9.
    Kim, S., Oh, H., Suk, J., Tsourdos, A.: Coordinated trajectory planning for efficient communication relay using multiple UAVs. Control. Eng. Pract. 29, 42–49 (2014)CrossRefGoogle Scholar
  10. 10.
    Han, Z., Swindlehurst, L., Liu, K.J.R.: Optimization of MANET Connectivity Via Smart Deployment / Movement of Unmanned Air Vehicles. IEEE Trans. Veh. Technol. 58(7), 3533–3546 (2009)CrossRefGoogle Scholar
  11. 11.
    Kim, S., Silson, P., Tsourdos, A., Shanmugavel, M.: Dubins path planning of multiple unmanned airborne vehicles for communication relay Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering 225(1), 12–25 (2011)Google Scholar
  12. 12.
    Choi, D.H., Jung, B.H., Sung, D.K.: Low-complexity Maneuvering Control of a UAV-based Relay without Location Information of Mobile Ground Nodes. IEEE Symposium on Computers and Communication, 1–6 (2014)Google Scholar
  13. 13.
    Oh, H., Shin, H.S., Kim, S., Ladosz, P., Chen, W.H.: Communication-aware convoy following guidance for UAVs in a complex urban environment. In: The 24th Mediterranean Conference on Control and Automation, Athens, Greece (2016)Google Scholar
  14. 14.
    Ladosz, P., Oh, H., Chen, W.-H.: Optimal positioning of communication relay unmanned aerial vehicles in urban environments. In: The International Conference on Unmanned Aircraft Systems, Washington, USA, p 2016 (2016)Google Scholar
  15. 15.
  16. 16.
    Sedgewick, R., Wayne, K.: Minimum spanning trees. http://algs4.cs.princeton.edu/43mst/ (2015)
  17. 17.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Conference on Neural Networks 4, 1942–1948 (1995)CrossRefGoogle Scholar
  18. 18.
    Mehrotra, K., Mahapatra, P.R.: A jerk model for tracking highly maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1094–1105 (1997)CrossRefGoogle Scholar
  19. 19.
    Shaferman, V., Shima, T.: Unmanned Aerial Vehicles Cooperative Tracking of Moving Ground Target in Urban Environments. J. Guid. Control. Dyn. 31(5), 1360–1371 (2008)CrossRefGoogle Scholar
  20. 20.
    Chinneck, J.: Practical optimization: A gentle introduction. http://www.sce.carleton.ca/faculty/chinneck/po.html (2015)

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Aeronautical and Automotive EngineeringLoughborough UniversityLoughboroughUK
  2. 2.School of Mechanical and Nuclear EngineeringUlsan National Institute of Science Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations