Advertisement

A Study on Dexterous Grasps via Parallel Manipulation Analogy

  • Erol Özgür
  • Grigore Gogu
  • Youcef Mezouar
Article
  • 199 Downloads

Abstract

This paper proposes a new approach for studying the dexterous grasping mechanisms via parallel manipulation analogy. The approach exploits the theories already developed for the dexterous robotic hands and the parallel manipulators. It also proposes an innovative conceptual design algorithm for dexterous grasping mechanisms with desired “dexterity” characteristics: mobility, connectivity, overconstraint, and redundancy. The provided quick mobility calculation formula is valid for all the grasping mechanisms whereas the other quick mobility calculation formulas are not. The proposed conceptual design algorithm is supported by example syntheses of a 3 dof translational motion dexterous grasping mechanism, a 3 dof (2 translational and 1 rotational) planar motion dexterous grasping mechanism and a 6 dof (3 translational and 3 rotational) spatial motion dexterous grasping mechanism.

Keywords

Dexterous grasps Mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borras-Sol, J., Dollar, A.M.: Analyzing Dexterous Hands using a Parallel Robots Framework, Autonomous Robots. Special Issue on Modern Approaches for Dexterous Manipulation 26(1-2), 169–180 (2014)Google Scholar
  2. 2.
    Salisbury, J.K.: Kinematic and Force Analysis of Articulated Hands, PhD Thesis, Mechanical Engineering, Stanford University (1982)Google Scholar
  3. 3.
    Salisbury, J.K., Roth, B.: Kinematic and Force Analysis of Articulated Mechanical Hands. ASME Journal of Mechanism Transmission and Automatic Design 105(1), 35–41 (1983)CrossRefGoogle Scholar
  4. 4.
    Tischler, C.R., Samuel, A.E., Hunt, K.H.: Kinematic Chains for Robot Hands - I, Orderly Number-Synthesis. Mech. Mach. Theory 30(8), 1193–1215 (1995)CrossRefGoogle Scholar
  5. 5.
    Tischler, C.R., Samuel, A.E., Hunt, K.H.: Kinematic Chains for Robot Hands - II, Kinematic Constraints, Classification, Connectivity, and Actuation. Mech. Mach. Theory 30(8), 1217–1239 (1995)CrossRefGoogle Scholar
  6. 6.
    Lee, J.J., Tsai, L.W.: Structural Synhtesis of Multi-fingered Hands. J. Mech. Des. 124, 272–276 (2002)CrossRefGoogle Scholar
  7. 7.
    Freudenstein, F.: The basic concepts of Polya’s theory of enumeration, with application to the structural classification of mechanisms. J. Mech. 3, 275–290 (1967)Google Scholar
  8. 8.
    Gogu, G.: Structural Synthesis of Parallel Robots - Part 1: Methodology. Springer (2008)Google Scholar
  9. 9.
    Ozgur, E., Gogu, G., Mezouar, Y.: Structural Synthesis of Dexterous Hands IEEE/RSJ Int Conference on Intelligent Robots and Systems (2014)Google Scholar
  10. 10.
    Laksminarayana, K.: Mechanics of from closure ASME paper 78-DET-32 (1978)Google Scholar
  11. 11.
    Nguyen, V.D.: Constructing froce-closure grasps. Int. J. Robot. Res. 7(3), 3–16 (1988)CrossRefGoogle Scholar
  12. 12.
    Reuleaux, F.: The Kinematics of Machinery, London: Macmillan, 1876 and New York: Dover, (translated by A.B.W Kennedy) (1963)Google Scholar
  13. 13.
    Somov, P.: Über Schraubengeschwindigkeiten eines festen Körpers beiverschiedener Zahl von Stützflachen. Z. Angew. Math. Phys. 42(161–182), 133–153 (1897)Google Scholar
  14. 14.
    Chebychev, P.A.: Théorie des mécanismes connus sous le nom de parallélogrammes, 2ème, partie Mémoires présentés à l’Académie impériale des sciences de Saint-Pétersbourg par divers savants (1896)Google Scholar
  15. 15.
    Grübler, M.: Getriebelehre: Eine Theorie des Zwanglaufes und der ebenen Mechanismen. Springer, Berlin (1917)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kutzbach, K.: Mechanische Leitungsverzweigung, ihre Gesetze und Anwendungen. Maschinenbau Betrieb 8, 710–716 (1929)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.SIGMA’Clermont - Institut PascalClermont FerrandFrance

Personalised recommendations