Multi-robot Deployment using Topological Maps

  • Reza Javanmard Alitappeh
  • Guilherme A. S. Pereira
  • Arthur R. Araújo
  • Luciano C. A. Pimenta
Article

Abstract

This paper proposes an efficient and distributed deployment strategy to optimally distribute teams of robots in environments that can be represented by topological maps. Among the several applications of our solution are sensing and coverage of large corridor-based buildings, such as hospitals and schools, and the optimal placement of service vehicles in the streets of a big city. The representation of the environment as a topological map transforms the original two or three-dimensional problem into a one-dimensional, simplified problem, thus reducing the computational cost of the solution. Moreover, each robot can reach its final position by simply following a sequence of intuitive, human-like commands, without the need for global metric localization, which also simplifies robot control. Besides presenting convergence proofs for our method, the paper also presents simulated and real world experiments that illustrate and validate our approach.

Keywords

Multi-robot deployment Topological map Multi-robot coverage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, A.R., Caminhas, D.D., Pereira, G.A.S.: An architecture for navigation of service robots in human-populated office-like environments. In: 11th IFAC Symposium on Robot Control SYROCO 2015, vol. 48, pp 189–194 (2015)Google Scholar
  2. 2.
    Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown non-convex environments. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 83, 61–75 (2013)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on riemannian manifolds with boundaries. Int. J. Robot. Res. 33(1), 113–137 (2014)CrossRefGoogle Scholar
  4. 4.
    Breitenmoser, A., Schwager, M., Metzger, J.C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp 4982–4989 (2010)Google Scholar
  5. 5.
    Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series, Princeton University Press (2009)Google Scholar
  6. 6.
    Caicedo-Nunez, C., Zefran, M.: Performing coverage on nonconvex domains. In: Proceedings of the IEEE International Conference on Control Applications (CCA), pp 1019–1024 (2008a)Google Scholar
  7. 7.
    Caicedo-Nunez, C.H., Zefran, M.: A coverage algorithm for a class of non-convex regions. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp 4244–4249 (2008b)Google Scholar
  8. 8.
    Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  9. 9.
    Daskin, M., Maass, K.: The p-median problem. In: Location Science, pp 21–45. Springer International Publishing (2015)Google Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(l 959), 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Durham, J., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for gossiping robots. IEEE Trans. Robot. 28(2), 364 – 378 (2012)Google Scholar
  13. 13.
    Hata, A.Y., Osorio, F.S., Wolf, D.F.: Robust curb detection and vehicle localization in urban environments. In: Proceedings of the 2014 IEEE Intelligent Vehicles Symposium, pp 1257–1262 (2014). doi:10.1109/IVS.2014.6856405
  14. 14.
    Javanmard Alitappeh, R., Pimenta, L.C.A.: Distributed Safe Deployment of Networked Robots. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 12, 65–77 (2016)CrossRefGoogle Scholar
  15. 15.
    Lam, C.P., Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation—-towards a harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99–112 (2011)CrossRefGoogle Scholar
  16. 16.
    Lee, S.G., Diaz-Mercado, Y., Egerstedt, M.: Multirobot control using time-varying density functions. IEEE Trans. Robot. 31(2), 489–493 (2015)CrossRefGoogle Scholar
  17. 17.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mahboubi, H., Sharifi, F.: Distributed coordination of multi-agent systems for coverage problem in presence of obstacles. In: Proceedings of American Control Conference (ACC), pp 5252–5257 (2012)Google Scholar
  19. 19.
    d’Andréa Novel, B., Campion, G., Bastin, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robot. Res. 14(6), 543–559 (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Pierson, A., Schwager, M.: Adaptive inter-robot trust for robust multi-robot sensor coverage. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 114, 167–183 (2016)Google Scholar
  21. 21.
    Pierson, A., Figueiredo, L., Pimenta, L.C.A., Schwager, M.: Adapting to performance variations in multi-robot coverage. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp 415–420 (2015)Google Scholar
  22. 22.
    Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a network of heterogeneous robots. In: Proceedings of IEEE Conference on Decision and Control (CDC), pp 3947–3952 (2008)Google Scholar
  23. 23.
    Pimenta, L.C.A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R.C., Pereira, G.A.S.: Simultaneous coverage and tracking (scat) of moving targets with robot networks. Algorithmic Foundation of Robotics VIII(57), 85–99 (2010)MATHGoogle Scholar
  24. 24.
    Reese, J.: Solution Methods for the p-Median Problem: An Annotated Bibliography. Networks 48, 125–142 (2006)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Schwager, M., Rus, D., Slotine, J.J.: Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)CrossRefGoogle Scholar
  26. 26.
    Senne, E., Lorena, L.A., Pereira, M.A.: A branch-and-price approach to p-median location problems. Comput. Oper. Res. 32, 1655–1664 (2005)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Sharifi, F., Zhang, Y., Aghdam, A.G.: A Distributed Deployment Strategy for Multi-Agent Systems Subject to Health Degradation and Communication Delays. J. Intell. Robot. Syst. 73(1), 623–633 (2014)CrossRefGoogle Scholar
  28. 28.
    Sharifi, F., Chamseddine, A., Mahboubi, H., Zhang, Y., Aghdam, A.: A distributed deployment strategy for a network of cooperative autonomous vehicles. IEEE Trans. Control Syst. Technol. 23(2), 737–745 (2015)CrossRefGoogle Scholar
  29. 29.
    Stergiopoulos, Y., Tzes, A.: Coverage-oriented coordination of mobile heterogeneous networks. In: Proceedings of 19th Mediterranean Conference on Control & Automation (MED), pp 175–180 (2011)Google Scholar
  30. 30.
    Yun, S.k., Rus, D.: Distributed coverage with mobile robots on a graph: locational optimization and equal-mass partitioning. Robotica 32(02), 257–277 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Reza Javanmard Alitappeh
    • 2
  • Guilherme A. S. Pereira
    • 1
  • Arthur R. Araújo
    • 1
  • Luciano C. A. Pimenta
    • 1
  1. 1.School of EngineeringUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Electrical and Computer Engineering DepartmentUniversity of Science and Technology of MazandaranBehshahrIran

Personalised recommendations