Journal of Intelligent & Robotic Systems

, Volume 85, Issue 1, pp 93–106 | Cite as

Vision-based Control of a Delta Parallel Robot via Linear Camera-Space Manipulation

  • Enrique Coronado
  • Mauro MayaEmail author
  • Antonio Cardenas
  • Orlando Guarneros
  • Davide Piovesan


One of the open problems to control a parallel robot in real-time is the larger number of parameters to be incorporated in the control model when compared to serial robots. This paper presents an innovative vision-based method to control a delta-type parallel robot based on Linear Camera-Space Manipulation. The proposed method is a simple and robust technique capable of achieving real-time control of robots without relying on the calibration of either the robot or the environment parameters. To document the robustness of this technique, a sensitivity analysis was performed in simulation where the effect of two sources of error on the end-point positioning are considered. Such sources are the variability of each link’s parameters, and the uncertainty of the visual measurements. Experimental results on a Clavel’s delta parallel robot show that end-point positioning errors obtained with Linear Camera-Space Manipulation are less than 1.5 mm, demonstrating a low sensitivity to parameter uncertainty in qualitative agreement with the simulation results. The results show that the developed approach is advantageous to control parallel robots for industrial applications in real-time and can obviate to a number of open problems common with the control of parallel robots.


Vision-based control CSM Parallel robot Robot control 

Mathematics Subject Classification (2010)

MSC 70Q05 MSC 68T40 93C85 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandilov, Z., Dukovski, V.: Several open problems in parallel robotics. Acta Technica Conviniensis, Bulletin of Engineering, Tome IV, 77–84 (2011)Google Scholar
  2. 2.
    Zhou, W., Chen, W., Liu, H., Li, X.: A new forward kinematic algorithm for a general stewart platform. Mech. Mach. Theory 87, 177–190 (2015)CrossRefGoogle Scholar
  3. 3.
    Liu, G., Wang, Y., Zhang, Y., Xie, Z.: Real-time solution of the forward kinematics for a parallel haptic device using a numerical approach based on neural networks. J. Mech. Sci. Technol. 29(6), 2487–2499 (2015)CrossRefGoogle Scholar
  4. 4.
    Ibaraki, S., Okuda, T., Kakino, Y., Nakagawa, M., Matsushita, T., Ando, T.: Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME Int. J. Ser. C 47(1), 160–167 (2004)CrossRefGoogle Scholar
  5. 5.
    Šika, Z., Hamrle, V., Valášek, M., Beneš, P.: Calibrability as additional design criterion of parallel kinematic machines. Mech. Mach. Theory 50, 48–63 (2012)CrossRefGoogle Scholar
  6. 6.
    Traslosheros, A., Sebastián, J.M., Torrijos, J., Carelli, R., Castillo, E.: An inexpensive method for kinematic calibration of a parallel robot by using one hand-held camera as main sensor. Sensors 13(8), 9941–9965 (2013)CrossRefGoogle Scholar
  7. 7.
    Clavel, R.: Conception d’un robot parallèle rapide à 4 degrés de liberté. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (1991)Google Scholar
  8. 8.
    Guglielmetti, P.: Model-based control of fast parallel robots. PhD thesis, EPFL (1994)Google Scholar
  9. 9.
    Liu, K., Lewis, F., Lebret, G., Taylor, D.: The singularities and dynamics of a stewart platform manipulator. J Intell Robot Syst 8(3), 287–308 (1993)CrossRefGoogle Scholar
  10. 10.
    Merlet, J.-P.: Parallel robots: CommandeGoogle Scholar
  11. 11.
    Ozgur, E., Dahmouche, R., Andreff, N., Martinet, P.: A vision-based generic dynamic model of pkms and its experimental validation on the quattro parallel robot. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pages 937–942 (2014)Google Scholar
  12. 12.
    Tsai, R.Y.: An efficient and accurate camera calibration technique for 3d machine vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 364–374, Miami Beach, FL (1996)Google Scholar
  13. 13.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. J. Robot. Autom. RA-3(4), 323–344 (1987)CrossRefGoogle Scholar
  14. 14.
    Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989)CrossRefGoogle Scholar
  15. 15.
    Traslosheros, A, Sebastian, J.M., Angel, L., Roberti, F., Carelliz, R.: Visual servoing of a parallel robot system. In: IEEE international symposium on intelligent signal processing, 2007. WISP 2007, pages 1–6 (2007)Google Scholar
  16. 16.
    Bellakehal, S., Andreff, N., Mezouar, Y., Tadjine, M.: Force/position control of parallel robots using exteroceptive pose measurements. Meccanica 46(1), 195–205 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Siradjuddin, I., Behera, L., McGinnity, T.M., Coleman, S.: Image-based visual servoing of a 7-dof robot manipulator using an adaptive distributed fuzzy pd controller. IEEE/ASME Trans. Mechatron. 19(2), 512–523 (April 2014)Google Scholar
  18. 18.
    Xu, W., Liu, Y., Liang, B., Xu, Y., Qiang, W.: Autonomous path planning and experiment study of free-floating space robot for target capturing. J. Intell. Robot. Syst. 51(3), 303–331 (2008)CrossRefGoogle Scholar
  19. 19.
    Xu, W., Liang, B., Li, C., Liu, Y., Xu, Y.: Autonomous target capturing of free-floating space robot: Theory and experiments. Robotica 27(03), 425–445 (2009)CrossRefGoogle Scholar
  20. 20.
    Seelinger, M., Yoder, J.-D.: Automatic visual guidance of a forklift engaging a pallet. Robot. Auton. Syst. 54(12), 1026–1038 (2006)CrossRefGoogle Scholar
  21. 21.
    Rendon-Mancha, J.M., Cardenas, A., Garcia, M.A., Gonzalez-Galvan, E., Lara, B., Robot positioning using camera-space manipulation with a linear camera model. IEEE Trans. Robot. 26 (4), 726–733 (2010)CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Galvan, E.J., Pazos, F., Skaar, S., Cardenas-Galindo, A.: Camera pan/tilt to eliminate the workspace-size/pixel-resolution tradeoff with camera-space manipulation. Robot. Comput. Integr. Manuf. 18(2), 95–104 (2002)CrossRefGoogle Scholar
  23. 23.
    Cárdenas, A., Seelinger, M., Goodwine, B., Skaar, S.B.: Vision-based control of a mobile base and on-board arm. Int. J. Robot. Res. 9(22), 677–698 (2003)CrossRefGoogle Scholar
  24. 24.
    Baumgartner, E.T.: In-situ exploration of mars using rover systems. In: Proceedings of the AIAA Space 2000 Conference., AIAA paper 2000-5062, Long Beach, CA (2000)Google Scholar
  25. 25.
    Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  26. 26.
    Zhou, N., Hao, K., Guo, C, Dou, Y.: Visual servo control system of 2-dof parallel robot. In: Software Engineering and Knowledge Engineering: Theory and Practice, pages 425–433. Springer (2012)Google Scholar
  27. 27.
    Ozgur, E., Dahmouche, R., Andreff, N., Martinet, P.: High speed parallel kinematic manipulator state estimation from legs observation. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 424–429 (2013)Google Scholar
  28. 28.
    Baumgartner, E.T., Schenker, P.S.: Autonomous image-plane robot control for martian lander operations (1996)Google Scholar
  29. 29.
    Seelinger, M., Yoder, J.-D., Baumgartner, E.T., Skaar, S.B.: High precision visual control of mobile manipulators. IEEE Trans. Robot. Autom. 18(6), 957–965 (2002)CrossRefGoogle Scholar
  30. 30.
    Fan, Z.: Industrial applications of camera space manipulation with structured light. PhD thesis University of Notre Dame, Notre Dame, IN (2003)Google Scholar
  31. 31.
    Liu, Y., Shi, D., Skaar, S.B.: Robust industrial robot real-time positioning system using vw-camera-space manipulation method. Industrial Robot: An Int. J. 41(1), 70–81 (2014)CrossRefGoogle Scholar
  32. 32.
    Seelinger, M., Skaar, S.B., Robinson, M.: An alternative approach for image-plane control of robots. In: The confluence of vision and control, pages 41–65. Springer (1998)Google Scholar
  33. 33.
    Horaud, R., Dornaika, F., Espiau, B.: Visually guided object grasping. IEEE Trans. Robot. Autom. 14(4), 525–532 (1998)CrossRefGoogle Scholar
  34. 34.
    Maya, M., Castillo, E., Lomelí, A., González-Galván, E., Cárdenas, A.: Workspace and payload-capacity of a new reconfigurable delta parallel robot. Int. J. Adv. Robot. Syst. 10(56), 1–11 (2013)CrossRefGoogle Scholar
  35. 35.
    Skaar, S.B., Brockman, W.H., Hanson, R.: Camera space manipulation. Int. J. Robot. Res. 6 (4), 20–32 (1987)CrossRefGoogle Scholar
  36. 36.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Enrique Coronado
    • 1
  • Mauro Maya
    • 1
    Email author
  • Antonio Cardenas
    • 1
  • Orlando Guarneros
    • 1
  • Davide Piovesan
    • 2
  1. 1.Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Gannon UniversityErieUSA

Personalised recommendations