Journal of Intelligent & Robotic Systems

, Volume 85, Issue 1, pp 107–126 | Cite as

A Neural Model of Coordinated Head and Eye Movement Control

  • Wasif Muhammad
  • Michael W. Spratling


Gaze shifts require the coordinated movement of both the eyes and the head in both animals and humanoid robots. To achieve this the brain and the robot control system needs to be able to perform complex non-linear sensory-motor transformations between many degrees of freedom and resolve the redundancy in such a system. In this article we propose a hierarchical neural network model for performing 3-D coordinated gaze shifts. The network is based on the PC/BC-DIM (Predictive Coding/Biased Competition with Divisive Input Modulation) basis function model. The proposed model consists of independent eyes and head controlled circuits with mutual interactions for the appropriate adjustment of coordination behaviour. Based on the initial eyes and head positions the network resolves redundancies involved in 3-D gaze shifts and produces accurate gaze control without any kinematic analysis or imposing any constraints. Furthermore the behaviour of the proposed model is consistent with coordinated eye and head movements observed in primates.


Basis function network Sensory-sensory transformation Sensory-motor transformation Function approximation Eye-head gaze shift Redundancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, G.: Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. J. Physiol. 287(1), 127–147 (1979)CrossRefGoogle Scholar
  2. 2.
    Blakemore, C., Donaghy, M.: Co-ordination of head and eyes in the gaze changing behaviour of cats. J. Physiol. 300(1), 317–335 (1980)CrossRefGoogle Scholar
  3. 3.
    Constantin, A., Wang, H., Monteon, J., Martinez-Trujillo, J., Crawford, J.: 3-dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex. Neuroscience 164(3), 1284–1302 (2009)CrossRefGoogle Scholar
  4. 4.
    Crawford, J., Martinez-Trujillo, J., Klier, E.: Neural control of three-dimensional eye and head movements. Curr. Opin. Neurobiol. 13(6), 655–662 (2003)CrossRefGoogle Scholar
  5. 5.
    Crawford, J.D., Ceylan, M.Z., Klier, E.M., Guitton, D.: Three-dimensional eye-head coordination during gaze saccades in the primate. J. Neurophysiol. 81(4), 1760–1782 (1999)Google Scholar
  6. 6.
    De Meyer, K., Spratling, M.W.: Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function, vol. 23 (2011)Google Scholar
  7. 7.
    Freedman, E.G.: Interactions between eye and head control signals can account for movement kinematics. Biol. Cybern. 84(6), 453–462 (2001)CrossRefGoogle Scholar
  8. 8.
    Freedman, E.G., Sparks, D.L.: Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol. 77(5), 2328–2348 (1997)Google Scholar
  9. 9.
    Freedman, E.G., Sparks, D.L.: Coordination of the eyes and head: movement kinematics. Exp. Brain Res. 131(1), 22–32 (2000)CrossRefGoogle Scholar
  10. 10.
    Galiana, H., Guitton, D.: Central organization and modeling of eye-head coordination during orienting gaze shiftsa. Ann. N. Y. Acad. Sci. 656(1), 452–471 (1992)CrossRefGoogle Scholar
  11. 11.
    Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233, 1416–9 (1986)CrossRefGoogle Scholar
  12. 12.
    Glenn, B., Vilis, T.: Violations of listing’s law after large eye and head gaze shifts. J. Neurophysiol. 68(1), 309–318 (1992)Google Scholar
  13. 13.
    Goossens, H.H., Van Opstal, A.: Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res. 114(3), 542–560 (1997)CrossRefGoogle Scholar
  14. 14.
    Gresty, M.: Coordination of head and eye movements to fixate continuous and intermittent targets. Vis. Res. 14(6), 395–403 (1974)CrossRefGoogle Scholar
  15. 15.
    Guitton, D.: Control of eye-head coordination during orienting gaze shifts. Trends Neurosci. 15(5), 174–179 (1992)CrossRefGoogle Scholar
  16. 16.
    Guitton, D., Douglas, R., Volle, M.: Eye-head coordination in cats. J. Neurophysiol. 52(6), 1030–1050 (1984)Google Scholar
  17. 17.
    Guitton, D., Munoz, D.P., Galiana, H.L.: Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol. 64(2), 509–531 (1990)Google Scholar
  18. 18.
    Guitton, D., Volle, M.: Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J. Neurophysiol. 58(3), 427–459 (1987)Google Scholar
  19. 19.
    Huang, Y., Rao, R.P.N.: Predictive coding. WIREs Cognit. Sci. 2, 580–93 (2011). doi: 10.1002/wcs.142 CrossRefGoogle Scholar
  20. 20.
    Kardamakis, A.A., Moschovakis, A.K.: Optimal control of gaze shifts. J. Neurosci. 29(24), 7723–7730 (2009)CrossRefGoogle Scholar
  21. 21.
    Klier, E.M., Wang, H., Crawford, J.D.: The superior colliculus encodes gaze commands in retinal coordinates. Nat. Neurosci. 4(6), 627–632 (2001)CrossRefGoogle Scholar
  22. 22.
    Klier, E.M., Wang, H., Crawford, J.D.: Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. J. Neurophysiol. 89(5), 2839–2853 (2003)CrossRefGoogle Scholar
  23. 23.
    Laurutis, V., Robinson, D.: The vestibulo-ocular reflex during human saccadic eye movements. J. Physiol. 373(1), 209–233 (1986)CrossRefGoogle Scholar
  24. 24.
    Law, J., Shaw, P., Lee, M.: A biologically constrained architecture for developmental learning of eye–head gaze control on a humanoid robot. Auton. Robot. 35(1), 77–92 (2013)CrossRefGoogle Scholar
  25. 25.
    Lopes, M., Bernardino, A., Santos-Victor, J., Rosander, K., von Hofsten, C.: Biomimetic eye-neck coordination. In: Development and Learning, IEEE 8th International Conference on, pp. 1–8. IEEE (2009)Google Scholar
  26. 26.
    Maini, E.S., Teti, G., Rubino, M., Laschi, C., Dario, P.: Bio-inspired control of eye-head coordination in a robotic anthropomorphic head. In: Biomedical Robotics and Biomechatronics, The First IEEE/RAS-EMBS International Conference on, pp. 549–554. IEEE (2006)Google Scholar
  27. 27.
    Maurer, C., Mergner, T., Lücking, C., Becker, W.: Adaptive changes of saccadic eye–head coordination resulting from altered head posture in torticollis spasmodicus. Brain 124(2), 413–426 (2001)CrossRefGoogle Scholar
  28. 28.
    McCluskey, M.K., Cullen, K.E.: Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture. J. Neurosci. 97(4), 2976–2991 (2007)Google Scholar
  29. 29.
    Medendorp, W., Melis, B., Gielen, C., Van Gisbergen, J.: Off-centric rotation axes in natural head movements: implications for vestibular reafference and kinematic redundancy. J. Neurosci. 79(4), 2025–2039 (1998)Google Scholar
  30. 30.
    Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The icub humanoid robot: An open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS ’08, pp. 50–6. ACM, New York, NY, USA. doi: 10.1145/1774674.1774683 (2008)
  31. 31.
    Milighetti, G., Vallone, L., De Luca, A.: Adaptive predictive gaze control of a redundant humanoid robot head. In: Intelligent Robots and Systems (IROS), IEEE/ RSJ International Conference on, pp. 3192–3198. IEEE (2011)Google Scholar
  32. 32.
    Misslisch, H., Tweed, D., Vilis, T.: Neural constraints on eye motion in human eye-head saccades. J. Neurosci. 79(2), 859–869 (1998)Google Scholar
  33. 33.
    Muhammad, W., Spratling, M.W.: A neural model of binocular saccade planning and vergence control. Adapt. Behav. 23(5), 265–282 (2015)CrossRefGoogle Scholar
  34. 34.
    Munoz, D.P., Guitton, D.: Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. ii. sustained discharges during motor preparation and fixation. J. Neurosci. 66(5), 1624–41 (1991)Google Scholar
  35. 35.
    Munoz, D.P., Guitton, D., Pelisson, D.: Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. iii. spatiotemporal characteristics of phasic motor discharges. J. Neurosci. 66 (5), 1642–1666 (1991)Google Scholar
  36. 36.
    Niebur, E.: Saliency map. Scholarpedia 2(8), 2675 (2007)CrossRefGoogle Scholar
  37. 37.
    Pelisson, D., Guitton, D., Munoz, D.: Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res. 78(3), 654–658 (1989)CrossRefGoogle Scholar
  38. 38.
    Pelisson, D., Prablanc, C., Urquizar, C.: Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans. J. Neurosci. 59(3), 997–1013 (1988)Google Scholar
  39. 39.
    Phillips, J., Ling, L., Fuchs, A., Siebold, C., Plorde, J.: Rapid horizontal gaze movement in the monkey. J. Neurosci. 73(4), 1632–1652 (1995)Google Scholar
  40. 40.
    Proudlock, F.A., Shekhar, H., Gottlob, I.: Age-related changes in head and eye coordination. Neurobiol. Aging 25(10), 1377–1385 (2004)CrossRefGoogle Scholar
  41. 41.
    Rao, R.P.N., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects 2(1), 79–87 (1999)Google Scholar
  42. 42.
    Saeb, S., Weber, C., Triesch, J.: Learning the optimal control of coordinated eye and head movements. PLoS Comput. Biol. 7(11), e1002,253 (2011)CrossRefGoogle Scholar
  43. 43.
    Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic oculomotor control. Adapt. Behav. 9(3-4), 189–207 (2001)CrossRefGoogle Scholar
  44. 44.
    Spratling, M.W.: Predictive coding as a model of biased competition in visual selective attention 48 (12), 1391–408 (2008)Google Scholar
  45. 45.
    Spratling, M.W.: Reconciling predictive coding and biased competition models of cortical function 2 (4), 1–8 (2008)Google Scholar
  46. 46.
    Spratling, M.W.: Learning posture invariant spatial representations through temporal correlations 1 (4), 253–63 (2009)Google Scholar
  47. 47.
    Spratling, M.W.: Classification using sparse representations: a biologically plausible approach 108 (1), 61–73 (2014)Google Scholar
  48. 48.
    Spratling, M.W.: Predictive coding as a model of cognition. Cogn. Process. (in press)Google Scholar
  49. 49.
    Spratling, M.W.: A neural implementation of bayesian inference based on predictive coding. submitted (sub.)Google Scholar
  50. 50.
    Spratling, M.W., De Meyer, K., Kompass, R.: Unsupervised learning of overlapping image components using divisive input modulation 2009(381457), 1–19 (2009)Google Scholar
  51. 51.
    Srinivasa, N., Grossberg, S.: A head–neck–eye system that learns fault-tolerant saccades to 3-d targets using a self-organizing neural model. Neural Netw. 21(9), 1380–1391 (2008)CrossRefGoogle Scholar
  52. 52.
    Straumann, D., Haslwanter, T., Hepp-Reymond, M.C., Hepp, K.: Listing’s law for eye, head and arm movements and their synergistic control. Exp. Brain Res. 86(1), 209–215 (1991)CrossRefGoogle Scholar
  53. 53.
    Takanishi, A., Matsuno, T., Kato, I.: Development of an anthropomorphic head-eye robot with two eyes-coordinated head-eye motion and pursuing motion in the depth direction. In: Intelligent Robots and Systems, 1997. IROS’97., Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 2, pp. 799–804. IEEE (1997)Google Scholar
  54. 54.
    Thomson, D., Loeb, G., Richmond, F.: Effect of neck posture on the activation of feline neck muscles during voluntary head turns. J. Neurophysiol. 72(4), 2004–2014 (1994)Google Scholar
  55. 55.
    Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., Nori, F.: An open-source simulator for cognitive robotics research: The prototype of the icub humanoid robot simulator. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS ’08, pp. 57–61. ACM, New York, NY, USA. doi: 10.1145/1774674.1774684 (2008)
  56. 56.
    Tomlinson, R.: Combined eye-head gaze shifts in the primate. iii. contributions to the accuracy of gaze saccades. J. Neurophysiol. 64(6), 1873–1891 (1990)Google Scholar
  57. 57.
    Tomlinson, R., Bahra, P.: Combined eye-head gaze shifts in the primate. i. metrics. J. Neurophysiol. 56(6), 1542–1557 (1986)Google Scholar
  58. 58.
    Tomlinson, R., Bahra, P.: Combined eye-head gaze shifts in the primate. ii. interactions between saccades and the vestibuloocular reflex. J. Neurophysiol. 56(6), 1558–1570 (1986)Google Scholar
  59. 59.
    Tweed, D.: Three-dimensional model of the human eye-head saccadic system. J. Neurophysiol. 77 (2), 654–666 (1997)Google Scholar
  60. 60.
    Tweed, D., Glenn, B., Vilis, T.: Eye-head coordination during large gaze shifts. J. Neurophysiol. 73(2), 766–779 (1995)Google Scholar
  61. 61.
    Winters, J.M., Stark, L.: Muscle models: what is gained and what is lost by varying model complexity. Biol. Cybern. 55(6), 403–420 (1987)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zangemeister, W., Lehman, S., Stark, L.: Sensitivity analysis and optimization for a head movement model. Biol. Cybern. 41(1), 33–45 (1981)CrossRefGoogle Scholar
  63. 63.
    Zangemeister, W., Lehman, S., Stark, L.: Simulation of head movement trajectories: model and fit to main sequence. Biol. Cybern. 41(1), 19–32 (1981)CrossRefGoogle Scholar
  64. 64.
    Zangemeister, W., Stark, L.: Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol. 77(3), 563–577 (1982)CrossRefGoogle Scholar
  65. 65.
    Zangemeister, W.H., Stark, L.: Gaze latency: variable interactions of head and eye latency. Exp. Neurol. 75(2), 389–406 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUnited Kingdom

Personalised recommendations