Journal of Intelligent & Robotic Systems

, Volume 85, Issue 1, pp 47–70 | Cite as

Biped Locomotion Control through a Biomimetic CPG-based Controller

  • Cristina P. SantosEmail author
  • Nuno Alves
  • Juan C. Moreno


Modern concepts of motor learning favour intensive training directed to the neural networks stimulation and reorganization within the spinal cord, the central pattern generator, by taking advantage of the neural plasticity. In the present work, a biomimetic controller using a system of adaptive oscillators is proposed to understand the neuronal principles underlying the human locomotion. A framework for neural control is presented, enabling the following contributions: a) robustness to external perturbations; b) flexibility to variations in the environmental constraints; and c) incorporation of volitional mechanisms for self-adjustment of gait dynamics. Phase modulation of adaptive oscillators and postural balance control are proposed as main strategies for stable locomotion. Simulations of the locomotion model with a biped robot in closed-loop control are presented to validate the implemented neuronal principles. Specifically, the proposed system for online modulation of previous learnt gait patterns was verified in terrains with different slopes. The proposed phase modulation method and postural balanced control enabled robustness enhancement considering a broader range of slope angles than recent studies. Furthermore, the system was also verified for tilted ground including different slopes in the same experiment and uneven terrain with obstacles. Adaptive Frequency Oscillators, under Dynamic Hebbian Learning Adaptation mechanism, are proposed to build a hierarchical control architecture with spinal and supra spinal centers with multiple rhythm-generating neural networks that drive the legs of a biped model. The proposed neural oscillators are based on frequency adaptation and can be entrained by sensory feedback to learn specific patterns. The proposed biomimetic controller intrinsically generates patterns of rhythmic activity that can be induced to sustain CPG function by specific training. This method provides versatile control, paving the way for the design of experimental motor control studies, optimal rehabilitation procedures and robot-assisted therapeutic outcomes.


Adaptive oscillators Biped locomotion Gait rehabilitation Phase modulation Stability control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves, N.: Walking on downslope and upslope terrains, movie1, (2012a)
  2. 2.
    Alves, N.: Obstacle avoidance through internal modulation, movie2, (2012b)
  3. 3.
    Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robot. 19(3), 219–232 (2005)CrossRefGoogle Scholar
  4. 4.
    Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., Tsuchiya, K.: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol. Cybern. 102(5), 373–387 (2010). ISSN 0340-1200CrossRefGoogle Scholar
  5. 5.
    Arena, P., Fortuna, L., et al.: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics a publication of the IEEE Systems Man and Cybernetics Society 34(4), 1823–1837 (2004)CrossRefGoogle Scholar
  6. 6.
    Ayers, J., Davis, J.L., Rudolph, A.: Neurotechnology for Biomimetic Robots. USA 1714 (2002)Google Scholar
  7. 7.
    Biswas, A., Lemaire, E.D., et al.: Dynamic gait stability index based on plantar pressures and fuzzy logic. J. Biomech. 41(7), 1574–1581 (2008)CrossRefGoogle Scholar
  8. 8.
    Buchli, J., Righetti, L., et al.: A dynamical systems approach to learning: a frequency-adaptive hopper robot. In: Proceedings of the ECAL’05, pp 210–220. Springer, UK (2005)Google Scholar
  9. 9.
    Buchli, J., Righetti, L., et al.: Engineering entrainment and adaptation in limit cycle systems. Biol. Cybern. 95(6), 645–664 (2006a)CrossRefzbMATHGoogle Scholar
  10. 10.
    Buchli, J., Righetti, L., et al.: Adaptive frequency oscillators applied to dynamic walking ii. Adapting to resonant body dynamics. In: Proceedings of Dynamic Walking 2006 (2006b)Google Scholar
  11. 11.
    Buchli, J., Righetti, L., et al.: Frequency analysis with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena 237(13), 1705–1718 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Buschges, A., Borgmann, A.: Network modularity: back to the future in motor control. Curr. Biol. 23(20), R936–938 (2013)CrossRefGoogle Scholar
  13. 13.
    Calancie, B., Needham-Shropshire, B., et al.: Involuntary stepping after chronic spinal cord injury. evidence for a central rhythm generator for locomotion in man. Brain J. Neurol. 117(Pt 5), 1143–1159 (1994) CrossRefGoogle Scholar
  14. 14.
    Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19(5), 557–569 (2001)CrossRefGoogle Scholar
  15. 15.
    Chevallereau, C., Abba, G., et al.: Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)CrossRefGoogle Scholar
  16. 16.
    Chow, C.K., Jacobson, D.H.: Studies of human locomotion via optimal programming. Math. Biosci. 10(3-4), 239–306 (1971)CrossRefzbMATHGoogle Scholar
  17. 17.
    Clark, M.M., Anderson, G.T.: A Nonlinear Oscillator-based Technique for Implementing Obstacle Avoidance in an Autonomous Mobile Robot, chapter 4, pp. 29–35. Space and Robotics 1998, USA (1998)Google Scholar
  18. 18.
    Dekker, M.H.P.: Zero-Moment Point for Stable Biped Walking. Technical Report, Eindhoven, University of Technology (2009)Google Scholar
  19. 19.
    Dietz, V.: Rehabilitation of Locomotor Function After a Central Motor Lesion, page online. Center for international rehabilitation research information and exchange, USA (2012)Google Scholar
  20. 20.
    Dimitrijevic, M.R., Gerasimenko, Y., et al.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860(1), 360–376 (1998a) CrossRefGoogle Scholar
  21. 21.
    Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860(1), 360–376 (1998b). ISSN 1749– 6632CrossRefGoogle Scholar
  22. 22.
    Duysens, J., et al.: A walking robot called human: lessons to be learned from neural control of locomotion. J. Biomech. 35(4), 447–453 (2002)CrossRefGoogle Scholar
  23. 23.
    Duysens, J., Van de Crommert, H.W.: Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture 7(2), 131–141 (1998)CrossRefGoogle Scholar
  24. 24.
    Full, R.J., Kubow, T., et al.: Quantifying dynamic stability and maneuverability in legged locomotion. Integr. Comp. Biol. 42, 149–157 (2002)CrossRefGoogle Scholar
  25. 25.
    Griener, A., Dyck, J., Goscnach, S.: Network modularity: back to the future in motor control. Neuroscience 250, 644–650 (2013)CrossRefGoogle Scholar
  26. 26.
    Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Guijarro, J.M.: Simulation of Biped Walking: Implementing Taga’s Model in Pyode. Technical Report, The Autonomous Systems Laboratory, Universidad Politcnica de Madrid (2008)Google Scholar
  28. 28.
    Haavisto, A.O., Hyotyniemi, B.H.: Simulation Tool of a Biped Walking Robot Model. Technical report, Helsinki Universit. Technol. Control Eng. Lab. (2004)Google Scholar
  29. 29.
    Haavisto, O., Hyotyniemi, H.: Clustered Regression Control of a Biped Robot Model, Humanoid Robots: New Developments. InTech, Austria (2007)Google Scholar
  30. 30.
    Habib, M.K., Guang, L.L., et al.: Bipedal locomotion control via cpgs with coupled nonlinear oscillators. In: 4th IEEE International Conference on Mechatronics, ICM2007, pp 1–6. IEEE, Japan (2007)Google Scholar
  31. 31.
    Hardt, M., Kreutz-Delgado, K., et al.: Optimal biped walking with a complete dynamical model. Proceedings of the 38th IEEE Conference on Decision and Control Cat No99CH36304 3, 2999–3004 (1999)Google Scholar
  32. 32.
    Horak, F.B., Nashner, L.M.: Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiol. 55(6), 1369–1381 (1986) [ pubmed/3734861]Google Scholar
  33. 33.
    Huang, Q.H.Q., Yokoi, K., et al.: Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation 3, 280–289 (2001)CrossRefGoogle Scholar
  34. 34.
    Hurmuzlu, Y., Gnot, F., Brogliato, B.: Modeling, stability and control of biped robots–a general framework. Autom. 40(10), 1647–1664 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  36. 36.
    Kajita, S., Tani, K.: Experimental study of biped dynamic walking. IEEE Control. Syst. Mag. 16(1), 13–19 (1996)CrossRefGoogle Scholar
  37. 37.
    Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H.: Adaptive motion of animals and machines. N. Y. 21(2), 141–154 (2006)Google Scholar
  38. 38.
    MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002)Google Scholar
  39. 39.
    Matos, V., Santos, C.P.: Central pattern generators with phase regulation for the control of humanoid locomotion. In: IEEE-RAS International Conference on Humanoid Robots, p 2012. Business Innovation Center Osaka , JapanGoogle Scholar
  40. 40.
    Maufroy, C., Nishikawa, T., Kimura, H.: Stable dynamic walking of a quadruped robot Kotetsu; using phase modulations based on leg loading/unloading. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 5225–5230 (2010a)Google Scholar
  41. 41.
    Maufroy, C., Kimura, H., Takase, K.: Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Auton. Robot. 28 (3), 331–353 (2010b). ISSN 0929-5593CrossRefGoogle Scholar
  42. 42.
    Molinari, M.: Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res. Bull. 78, 22–25 (2009)CrossRefGoogle Scholar
  43. 43.
    Nakanishi, J., Morimoto, J., et al.: Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives. Learning 47(2-3), 79–91 (2004)Google Scholar
  44. 44.
    Nishiwaki, K.H., Sugihara, T., et al.: Online mixture and connection of basic motions for humanoid walking control by footprint specification. In: Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation Cat No01CH37164, vol. 4, pp 4110–4115 (2001)Google Scholar
  45. 45.
    Pratt, J.E., Chee-Meng, C., et al.: Virtual model control: an intuitive approach for bipedal locomotion. I. J. Robotic Res. 20, 129–143 (2001)CrossRefGoogle Scholar
  46. 46.
    Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings 2006 IEEE ICRA, pp 1585–1590. IEEE, USA (2006)Google Scholar
  47. 47.
    Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: 2008 IEEE International Conference on Robotics and Automation, pp 819–824 (2008a)Google Scholar
  48. 48.
    Righetti, L., Buchli, J., et al.: From dynamic hebbian learning for oscillators to adaptive central pattern generators. In: Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Germany. Verlag ISLE, Ilmenau. Full paper on CD (2005)Google Scholar
  49. 49.
    Righetti, L., Buchli, J., et al.: Dynamic hebbian learning in adaptive frequency oscillators. Phys. D. 216, 269–281 (2006a)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Righetti, L., Buchli, J., et al.: Adaptive frequency oscillators applied to dynamic walking i. programmable central pattern generators. Physica, 2006–2006 (2006b)Google Scholar
  51. 51.
    Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp 819–824 (2008b)Google Scholar
  52. 52.
    Rinderknecht, M.D., Delaloye, F.A., et al.: Assistance using adaptive oscillators: Sensitivity analysis on the resonance frequency. In: Proceedings of the International Conference on Rehabilitation Robotics, Zurich, Switzerland. IEEE, Switzerland (2011a)Google Scholar
  53. 53.
    Rinderknecht, M.D., Delaloye, F.A., et al.: Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp 1–6 (2011b)Google Scholar
  54. 54.
    Ronsse, R., Vitiello, N., et al.: Adaptive oscillators with human-in-the-loop: proof of concept for assistance and rehabilitation. In: Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2010)Google Scholar
  55. 55.
    Ruffieux, S., Righetti, L.: Adaptive locomotion controller for a quadruped robot. Technical report, Ecole Polytechnique Federale de Lausanne (EPDL) (2007)Google Scholar
  56. 56.
    Schaal, S., Peters, J., et al.: Learning movement primitives. Mot. Control. 15(1), 1–10 (2004)Google Scholar
  57. 57.
    Silva, F.M., Machado, J.A.T.: Kinematic Aspects of Robotic Biped Locomotion Systems, vol. 1, pp 266–272. IEEE, Hungary (1997)Google Scholar
  58. 58.
    Spitz, J., Or, Y., et al.: Towards a biologically inspired open loop controller for dynamic biped locomotion. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2011, pp 503 –508. IEEE, Thailand (2011)Google Scholar
  59. 59.
    Taga, G.: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern. 78(1), 9–17 (1998)CrossRefzbMATHGoogle Scholar
  60. 60.
    Taga, G.: Nonlinear dynamics of human locomotion: from real-time adaptation to development. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive Motion of Animals and Machines, pp 189–204. Springer, Tokyo, Japan (2006)Google Scholar
  61. 61.
    Tsuchiya, K., Aoi, S., et al.: Locomotion control of a biped locomotion robot using nonlinear oscillators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003, vol. 2, pp 1745–1750. IEEE, USA (2003)Google Scholar
  62. 62.
    Veskos, P., Demiris, Y.: Developmental acquisition of entrainment skills in robot swinging using van der pol oscillators. Biol. Cybern. 2, 87–93 (2005)Google Scholar
  63. 63.
    Vukobratovic, M., Borovac, B.: Zero-moment point- thirty five years of its life. Int. J. Humanoid Rob. 1, 157–173 (2004)CrossRefGoogle Scholar
  64. 64.
    Wight, D.L.: A Foot Placement Strategy for Robust Bipedal Gait Control. Canadian theses. University of waterloo, Canada, 2008. ISBN 9780494433683Google Scholar
  65. 65.
    Wirz, M., Bastiaenen, C., de Bie, R., Dietz, V.: Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: a randomized controlled multicenter trial. BMC Neurol. 11(1), 60 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cristina P. Santos
    • 1
    Email author
  • Nuno Alves
    • 1
  • Juan C. Moreno
    • 2
  1. 1.CMEMs-UminhoUniversity of MinhoBragaPortugal
  2. 2.Consejo Superior de Investigacíones CientíficasMadridSpain

Personalised recommendations