Advertisement

Journal of Intelligent & Robotic Systems

, Volume 85, Issue 2, pp 331–352 | Cite as

Identification-Based Robust Motion Control of an AUV: Optimized by Particle Swarm Optimization Algorithm

  • Sayed Hamid Mousavian
  • Hamid Reza KoofigarEmail author
Article

Abstract

In this paper, the problem of identification-based robust motion control of an Autonomous Underwater Vehicle (AUV) is investigated. The unknown system parameters are estimated by using an adaptive parameter identifier, whose gains are optimized by Particle Swarm Optimization (PSO) algorithm. Removing the trial and error procedure and ensuring the convergence property together with fast response, are the benefits of such identification scheme. On the other hand, the system uncertainties, hydrodynamic parameter variations and external disturbances which affect the identified dynamical model, are also taken into account. The cross-coupling effects between subsystems are also considered as model uncertainties. Such uncertain model is then adopted in control synthesis procedure, in the steering and diving modes. In order to achieve the robust stability and performance, two robust control strategies are presented here to solve the motion control problem. First, an \(H_{\infty }\) mixed sensitivity problem is formulated in which the weighting functions are selected based on an optimization criterion, by using PSO algorithm. Controller order reduction is also applied to the resulting diving and steering controllers, using the Hankel norm approximation. Then, an Adaptive Sliding Mode Control (ASMC), whose sliding surface coefficients are optimized by PSO algorithm, is developed for the identified AUV model. Possessing the robustness properties with respect to system perturbations, the developed Sliding Mode Control (SMC) removes the complexity of uncertain model representation and the limitations on choosing the weighting functions in the \(H_{\infty }\) control problem. The upper bounds of perturbations are not required to be known in the proposed control schemes. The simulation results are also presented to demonstrate the performance of the proposed identification-based control methods.

Keywords

Autonomous underwater vehicle Robust control Adaptive identification Model uncertainty PSO algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y., Streitlien, K., Bellingham, J.G., Baggeroer, A.B.: Acoustic doppler velocimeter flow measurement from an autonomous underwater vehicle with applications to deep ocean convection. J. Atmos. Ocean. Technol. 18(12), 2038–2051 (2001)CrossRefGoogle Scholar
  2. 2.
    Yuh, J.: Design and control of autonomous underwater robots: A survey. Auton. Robot. 8(1), 7–24 (2000)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Baggeroer, A.B., Bellingham, J.G.: Spectral-feature classification of oceanographic processes using an autonomous underwater vehicle. IEEE J. Ocean. Eng. 26(4), 726–741 (2001)CrossRefGoogle Scholar
  4. 4.
    Kunz, C., Murphy, C., Camilli, R., Singh, H., Bailey, J., Eustice, R., Jakuba, M., Nakamura, K., Roman, C., Sato, T., Sohn, R.A., Willis, C.: Deep sea underwater robotic exploration in the ice-covered arctic ocean with AUVs. In: IEEE International Conference on Intelligent Robots and Systems, pp 3654–3660 (2008)Google Scholar
  5. 5.
    Koofigar, H.R.: Adaptive control of underwater vehicles with unknown model parameters and unstructured uncertainties. In: Proceedings of SICE Annual Conference, pp 192–196 (2012)Google Scholar
  6. 6.
    Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Modeling and identification of an open-frame underwater vehicle: The yaw motion dynamics. J. Intell. Robot. Syst. 66(1–2), 37–56 (2012)Google Scholar
  7. 7.
    Joonyoung, K., Kihun, K., Choi, H.S., Seong, W., Lee, K.Y.: Estimation of hydrodynamic coefficients for an auv using nonlinear observers. IEEE J. Ocean. Eng. 27(4), 830–840 (2002)CrossRefGoogle Scholar
  8. 8.
    Juan Carlos, C.L., DecioCrisol, D.: AUV identification and robust control. In: Proceedings of the 18th International Federation of Automatic Control World Congress, vol. 18, pp 14735–14741 (2011)Google Scholar
  9. 9.
    Smallwood, D.A., Whitcomb, L.L.: Preliminary experiments in the adaptive identification of dynamically positioned underwater robotic vehicles. In: IEEE International Conference on Intelligent Robots and Systems, vol. 4, pp 1803–1810 (2001)Google Scholar
  10. 10.
    Ven, P.W.J.V.D, Johansen, T.A., Sørensen, A.J., Flanagan, C., Toal, D.: Neural network augmented identification of underwater vehicle models. Control. Eng. Pract. 15(6), 715–725 (2007)CrossRefGoogle Scholar
  11. 11.
    Bossley, K.M., Brown, M., Harris, C.J.: Neurofuzzy identification of an autonomous underwater vehicle. Int. J. Syst. Sci. 30(9), 901–913 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Petrich, J., Stilwell, D.J.: Model simplification for AUV pitch-axis control design. J. Ocean. Eng. 37(7), 638–651 (2010)CrossRefGoogle Scholar
  13. 13.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications (1996)Google Scholar
  14. 14.
    Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley (1994)Google Scholar
  15. 15.
    Naeem, W., Sutton, R., Ahmad, S.M.: LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. In: International Federation of Automatic Control, pp 31–36 (2003)Google Scholar
  16. 16.
    Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Single input fuzzy logic controller for unmanned underwater vehicle. J. Intell. Robot. Syst. 59(1), 87–100 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chin, C.S., Lau, M.W.S., Low, E., Seet, G.G.L.: Robust and decoupled control system of underwater robotic vehicle for stabilization and pipeline tracking. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 222(4), 261–278 (2008)Google Scholar
  18. 18.
    Kuo, T.C., Huang, Y.J., Yu, H.H.: FRSMC design for the steering control and diving control of underwater vehicles. J. Mar. Sci. Technol. 17(1), 50–59 (2009)Google Scholar
  19. 19.
    Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control systems- a review of decision making. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 225(2), 155–195 (2011)Google Scholar
  20. 20.
    You, S.S., Lim, T.W., Jeong, S.K.: General path-following maneuvers for an underwater vehicle using robust control synthesis. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 224(8), 960–969 (2010)Google Scholar
  21. 21.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall (1998)Google Scholar
  22. 22.
    Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  23. 23.
    Geranmehr, B., Nekoo, S.R.: Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. J. Ocean Eng. 96, 248–257 (2015)CrossRefGoogle Scholar
  24. 24.
    Kennedy, J.: The particle swarm: Social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, pp 303–308 (1997)Google Scholar
  25. 25.
    Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. J. Adv. Eng. Inf. 19(1), 43–53 (2005)CrossRefGoogle Scholar
  26. 26.
    Fourie, P.C., Groenwold, A.A.: The particle swarm optimization algorithm in size and shape optimization. J. Struct. Multidiscip. Optim. 23(4), 259–267 (2002)CrossRefGoogle Scholar
  27. 27.
    Taghirad, H.D.: Belanger, P.R.: \(\mathrm {H}_{\infty }\)-based robust torque control of harmonic drive systems under free- and constrained-motion applications. In: IEEE International Conference on Control Applications, vol. 2, pp 990–994 (1998)Google Scholar
  28. 28.
    Gu, D.W., Petkov, P.H., Konstantinov, M.M.: Robust Control Design with Matlab, 2nd edn. Springer -Verlag, London (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lundstrom, P., Skogestad, S., Wang, Z.Q.: Uncertainty weight selection for H-infinity and mu-control methods. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp 1537–1542 (1991)Google Scholar
  30. 30.
    Nag, A., Patel, S.S., Kishore, K., Akbar, S.A.: A robust H-infinity based depth control of an autonomous underwater vehicle. In: International Conference on Advanced Electronic Systems, pp 68–73 (2013)Google Scholar
  31. 31.
    Souza, E.C.D., Maruyama, N.: μ-synthesis for unmanned underwater vehicles current disturbance rejection. J. Braz. Soc. Mech. Sci. Eng. 33(3), 357–365 (2011)CrossRefGoogle Scholar
  32. 32.
    Feng, Z., Allen, R.: Reduced order \(\mathrm {H}_{\infty }\) control of an autonomous underwater vehicle. Control. Eng. Pract. 12(12), 1511–1520 (2004)CrossRefGoogle Scholar
  33. 33.
    Lee, P.M., Hong, S.W., Lim, Y.K., Lee, C.M., Jeon, B.H., Park, J.W.: Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J. Ocean. Eng. 24(3), 388–395 (1999)CrossRefGoogle Scholar
  34. 34.
    Rodrigues, L., Tavares, P., Prado, M.: Sliding mode control of an AUV in the diving and steering planes. In: Conference Proceedings on Prospects for the 21st Century, vol. 2, pp 576–583 (1996)Google Scholar
  35. 35.
    Tang, Z., Zhou, J., Bian, X., Jia, H.: Simulation of optimal integral sliding mode controller for the depth control of AUV. In: IEEE International Conference on Information and Automation, pp 2379–2383 (2010)Google Scholar
  36. 36.
    Joe, H., Kim, M., Yu, S.C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. J. Nonlinear Dyn. 78(1), 183–196 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations