Advertisement

Journal of Intelligent & Robotic Systems

, Volume 85, Issue 3–4, pp 413–429 | Cite as

Novel Haptic Device Using Jamming Principle for Providing Kinaesthetic Feedback in Glove-Based Control Interface

  • Igor Zubrycki
  • Grzegorz Granosik
Open Access
Article

Abstract

This paper presents a new type of wearable haptic device which can augment a sensor glove in various tasks of telemanipulation. We present the details of its two alternative designs jamming tubes or jamming pads, and their control system. These devices use the jamming phenomena to change the stiffness of their elements and block the hand movement when a vacuum is applied. We present results of our experiments to measure static and dynamic changes in stiffness, which can be used to change the perception of grabbing hard or soft objects. The device, at its current state is capable of resisting forces of up to 7 N with 5 mm displacement and can simulate hardness up to the hardness of a rubber. However, time necessary for a complete change of stiffness is high (time constant 0.5 s); therefore, additional cutaneous interface was added in a form of small vibration motors. Finally, we show an application of the haptic interface in our teleoperation system to provide the operator with haptic feedback in a light weight and simple form.

Keywords

Haptic device Haptics and haptic interfaces Jamming Soft robotics Robot control interface Human-robot interaction 

References

  1. 1.
    CyberGrasp System v2.0, user guide (2009). http://www.upc.edu/sct/documents_equipament/d_184_id-485.pdf
  2. 2.
    Bouchier, P.: Embedded ros [ros topics]. IEEE Robot. Autom. Mag. 20(2), 17–19 (2013)CrossRefGoogle Scholar
  3. 3.
    Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The rutgers master ii-new design force-feedback glove. IEEE/ASME Trans. Mechatronics 7(2), 256–263 (2002)CrossRefGoogle Scholar
  4. 4.
    Cates, M., Wittmer, J., Bouchaud, J.P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841 (1998)CrossRefGoogle Scholar
  5. 5.
    Dipietro, L., Sabatini, A., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 461–482 (2008). doi: 10.1109/TSMCC.2008.923862 CrossRefGoogle Scholar
  6. 6.
    Edin, B.B., Howe, R., Westling, G., Cutkosky, M.: A physiological method for relaying frictional information to a human teleoperator. IEEE Trans. Syst. Man Cybern. 23(2), 427–432 (1993)CrossRefGoogle Scholar
  7. 7.
    Fabiani, L., Burdea, G., Langrana, N., Gomez, D.: Human interface using the rutgers master ii force feedback interface. In: Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, 1996, pp. 54–59 (1996). doi: 10.1109/VRAIS.1996.490510
  8. 8.
    Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.: Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-Changing Devices. In: Proceedings of the 25Th Annual ACM Symposium on User Interface Software and Technology, pp. 519–528. ACM (2012)Google Scholar
  9. 9.
    Galiana, I., Ferre, M.: Multi-finger Haptic Interaction. Springer (2013)Google Scholar
  10. 10.
    Hale, K., Stanney, K.: Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Comput. Graph. Appl. 24(2), 33–39 (2004). doi: 10.1109/MCG.2004.1274059 CrossRefGoogle Scholar
  11. 11.
    Hale, K.S., Stanney, K.M.: Handbook of virtual environments: design, implementation, and applications, chap. 5, pp. 93–117. CRC Press (2002)Google Scholar
  12. 12.
    Hannaford, B., Wood, L., McAffee, D., Zak, H.: Performance evaluation of a six-axis generalized force-reflecting teleoperator. IEEE Trans. Syst. Man Cybern. 21(3), 620–633 (1991). doi: 10.1109/21.97455 CrossRefGoogle Scholar
  13. 13.
    In, H., Cho, K.J.: Exo-glove: A soft wearable robot for the hand with a soft tendon routing system. IEEE Robotics Automation Magazine (2014). AcceptedGoogle Scholar
  14. 14.
    Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2922–2927 (2012). doi: 10.1109/IROS.2012.6385696
  15. 15.
    Kim, Y.J., Cheng, S., Kim, S., Iagnemma, K.: A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Reliab. 29(4), 1031–1042 (2013)Google Scholar
  16. 16.
    Kortum, P.: HCI Beyond the GUI: Design for Haptic, Speech, Olfactory, and Other Nontraditional Interfaces, Chap. 2. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  17. 17.
    Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993)CrossRefGoogle Scholar
  18. 18.
    Luo, H., Hanagud, S.: Dynamics of delaminated beams. Int. J. Solids Struct. 37(10), 1501–1519 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mitsuda, T., Kuge, S., Wakabayashi, M., Kawamura, S.: Wearable Haptic Display by the Use of a Particle Mechanical Constraint. In: Proceedings of the 10Th Symposium On Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002. HAPTICS 2002, pp 153–158. IEEE (2002)Google Scholar
  20. 20.
    Oberg, E., Jones, F., Ryffel, H., McCauley, C., Heald, R.: Machinerys handbook 28th edition (2008)Google Scholar
  21. 21.
    Ou, J., Yao, L., Tauber, D., Ishii, H.: Methods and apparatus for layer jamming. US Patent App. 14/516,039 (2014)Google Scholar
  22. 22.
    Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: jamsheets: Thin interfaces with tunable stiffness enabled by layer jamming. In: Proceedings of the 8th Int. Conf, on Tangible, Embedded and Embodied Interaction, TEI ’14, pp. 65–72. ACM, New York (2013). doi: 10.1145/2540930.2540971
  23. 23.
    Sakaguchi, M., Furusho, J., Takesue, N.: Passive force display using er brakes and its control experiments. In: Proceedings of the IEEE Virtual Reality, 2001, pp. 7–12 (2001). doi: 10.1109/VR.2001.913764
  24. 24.
    Scikit-learn.org: Theil-sen regression scikit-learn 0.17 documentation. http://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html (2015)
  25. 25.
    Sen, P.K.: Estimates of the regression coefficient based on kendall’s tau. J. Am. Stat. Assoc. 63 (324), 1379–1389 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Simon, T.M., Smith, R.T., Thomas, B.H.: Wearable jamming mitten for virtual environment haptics. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, ISWC ’14, pp. 67–70. ACM, New York (2014) doi: 10.1145/2634317.2634342
  27. 27.
    Spirkovska, L.: Summary of tactile user interfaces techniques and systems (2004)Google Scholar
  28. 28.
    Stanley, A., Gwilliam, J., Okamura, A.: Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In: World Haptics Conference (WHC), 2013, pp. 25–30 (2013) doi: 10.1109/WHC.2013.6548379
  29. 29.
    Steltz, E., Mozeika, A., Rembisz, J., Corson, N., Jaeger, H.: Jamming as an Enabling Technology for Soft Robotics. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pp. 764,225–764,225. International Society for Optics and Photonics (2010)Google Scholar
  30. 30.
    Tenzer, Y., Jentoft, L.P., Howe, R.D.: The feel of mems barometers: inexpensive and easily customized tactile array sensors. IEEE Robot. Autom. Mag. 21(3), 89–95 (2014)CrossRefGoogle Scholar
  31. 31.
    Thompson-Bean, E., Steiner, O., McDaid, A.: A Soft Robotic Exoskeleton Utilizing Granular Jamming. In: 2015 IEEE International Conference On Advanced Intelligent Mechatronics (AIM), pp. 165–170. IEEE (2015)Google Scholar
  32. 32.
    Visell, Y., Duraikkannan, K.A., Hayward, V.: A Device and Method for Multimodal Haptic Rendering of Volumetric Stiffness. In: Eurohaptics (1)’14, pp. 478–486 (2014)Google Scholar
  33. 33.
    Yokokohji, Y., Muramori, N., Sato, Y., Kikura, T., Yoshikawa, T.: Design and path planning of an encountered-type haptic display for multiple fingertip contacts based on the observation of human grasping behavior. In: Proceedings of the ICRA ’04. 2004 IEEE Int.l Conf. on Robotics and Automation, (2004), vol. 2, pp. 1986–1991 (2004). doi: 10.1109/ROBOT.2004.1308115
  34. 34.
    Zubrycki, I., Granosik, G.: Test setup for multi-finger gripper control based on robot operating system (ros). In: Proceedings of 9th Int. Workshop on Robot Motion and Control, pp. 135–140 (2013) doi: 10.1109/RoMoCo.2013.6614598
  35. 35.
    Zubrycki, I., Granosik, G.: Using Integrated Vision Systems: Three Gears and Leap Motion, to Control a 3-Finger Dexterous Gripper. In: Recent Advances in Automation, Robotics and Measuring Techniques, pp. 553–564. Springer (2014)Google Scholar
  36. 36.
    Zubrycki, I., Granosik, G.: Intuitive user interfaces for mobile manipulation tasks. Journal of Automation Mobile Robotics & Intelligent Systems 8(1) (2015)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Automatic ControlLodz University of TechnologyŁódźPoland

Personalised recommendations