Advertisement

Journal of Intelligent & Robotic Systems

, Volume 85, Issue 2, pp 277–292 | Cite as

A Velocity-Based Dynamic Model and Its Properties for Differential Drive Mobile Robots

  • Felipe N. MartinsEmail author
  • Mário Sarcinelli-Filho
  • Ricardo Carelli
Article

Abstract

An important issue in the field of motion control of wheeled mobile robots is that the design of most controllers is based only on the robot’s kinematics. However, when high-speed movements and/or heavy load transportation are required, it becomes essential to consider the robot dynamics as well. The control signals generated by most dynamic controllers reported in the literature are torques or voltages for the robot motors, while commercial robots usually accept velocity commands. In this context, we present a velocity-based dynamic model for differential drive mobile robots that also includes the dynamics of the robot actuators. Such model has linear and angular velocities as inputs and has been included in Peter Corke’s Robotics Toolbox for MATLAB, therefore it can be easily integrated into simulation systems that have been built for the unicycle kinematics. We demonstrate that the proposed dynamic model has useful mathematical properties. We also present an application of such model on the design of an adaptive dynamic controller and the stability analysis of the complete system, while applying the proposed model properties. Finally, we show some simulation and experimental results and discuss the advantages and limitations of the proposed model.

Keywords

Robot dynamics and control Dynamic modelling Adaptive control Mobile robot 

Mathematics Subject Classification (2010)

70E60 93A30 93D05 93C40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andaluz, V.H., Canseco, P., Varela, J., Ortiz, J.S., Pérez, M.G., Roberti, F., Carelli, R.: Robust control with dynamic compensation for human-wheelchair system. In: Intelligent Robotics and Applications, pp. 376–389. Springer (2014)Google Scholar
  2. 2.
    Antonini, P., Ippoliti, G., Longhi, S.: Learning control of mobile robots using a multiprocessor system. Control. Eng. Pract. (14):1279–1295 (2006)Google Scholar
  3. 3.
    Birk, A., Kenn, H.: Roboguard, a teleoperated mobile security robot. Control. Eng. Pract. 10(11), 1259-1264 (2002)Google Scholar
  4. 4.
    Boyd, S., Sastry, S.: Adaptive control: stability, convergence, and robustness. Prentice Hall, USA (1989)Google Scholar
  5. 5.
    Chen, C., Li, T., Yeh, Y., Chang, C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)CrossRefGoogle Scholar
  6. 6.
    Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Das, T., Kar, I.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  8. 8.
    De La Cruz, C., Carelli, R.: Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica 26(03), 345–356 (2008)CrossRefGoogle Scholar
  9. 9.
    De La Cruz, C., Celeste, W., Bastos-Filho, T.: A robust navigation system for robotic wheelchairs. Control. Eng. Pract. 19(6), 575–590 (2011)CrossRefGoogle Scholar
  10. 10.
    Do, K.: Bounded controllers for global path tracking control of unicycle-type mobile robots. Robot. Auton. Syst. 61(8), 775-784 (2013)Google Scholar
  11. 11.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. J. Robot. Syst. 14(3), 149–163 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 620–629 (2015)Google Scholar
  13. 13.
    He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Cybern. PP(99), 759–770 (2015)Google Scholar
  14. 14.
    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2015)CrossRefGoogle Scholar
  15. 15.
    Kaufman, H., Sobel, K.: Direct Adaptive Control Algorithms: Theory and Applications, pp. 182–184 (1998)Google Scholar
  16. 16.
    Lapierre, L., Zapata, R., Lepinay, P.: Combined path-following and obstacle avoidance control of a wheeled robot. Int. J. Robot. Res. 26(4), 361–375 (2007)CrossRefGoogle Scholar
  17. 17.
    Laut, J.: A dynamic parameter identification method for migrating control strategies between heterogeneous wheeled mobile robots. Ph.D. thesis, Worcester Polytechnic Institute (2011)Google Scholar
  18. 18.
    Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  19. 19.
    Martins, F.: Velocity-based dynamic model and adaptive controller for differential steered mobile robot. Available at http://www.mathworks.com/matlabcentral/fileexchange/44850 (2013)
  20. 20.
    Martins, F., Celeste, W., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.: Kinematic and adaptive dynamic trajectory tracking controller for mobile robots. In: 3rd International Conference on Advances in Vehicle Control and Safety - AVCS07. Buenos Aires, Argentina (2007)Google Scholar
  21. 21.
    Martins, F., Celeste, W., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16, 1354–1363 (2008). doi: 10.1016/j.conengprac.2008.03.004 CrossRefGoogle Scholar
  22. 22.
    Morin, P., Samson, C.: Motion control of wheeled mobile robots. In: Springer Handbook of Robotics, pp. 799–826. Springer (2008)Google Scholar
  23. 23.
    Onat, A., Ozkan, M.: Dynamic adaptive trajectory tracking control of nonholonomic mobile robots using multiple models approach. Adv. Robot. 29(14), 913–928 (2015)CrossRefGoogle Scholar
  24. 24.
    Prassler, E., Ritter, A., Schaeffer, C., Fiorini, P.: A short history of cleaning robots. Auton. Robot. 9(3), 211–226 (2000)CrossRefGoogle Scholar
  25. 25.
    Rossomando, F.G., Soria, C., Carelli, R.: Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties. Eng. Appl. Artif. Intell. 26(10), 2251–2259 (2013)CrossRefGoogle Scholar
  26. 26.
    Schaft, A.J.v.d.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (1999)Google Scholar
  27. 27.
    Shojaei, K., Mohammad Shahri, A., Tarakameh, A.: Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties. Robot. Comput. Integr. Manuf. 27(1), 194–204 (2011)CrossRefGoogle Scholar
  28. 28.
    Siegwart, R., Nourbakhsh, I., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. MIT Press, Cambridge (2011)Google Scholar
  29. 29.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)Google Scholar
  30. 30.
    Stouten, B, de Graaf, A.: Cooperative transportation of a large object-development of an industrial application. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2450–2455 (2004)Google Scholar
  31. 31.
    Utstumo, T., Berge, T.W., Gravdahl, J.T.: Non-linear model predictive control for constrained robot navigation in row crops. In: IEEE International Conference on Industrial Technology (ICIT 2015) (2015)Google Scholar
  32. 32.
    Wang, K.: Near-optimal Tracking Control of a Nonholonomic Mobile Robot with Uncertainties. Int. J. Adv. Robot. Syst. 9, 66 (2012). 10.5772/51189Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Felipe N. Martins
    • 1
    Email author
  • Mário Sarcinelli-Filho
    • 2
  • Ricardo Carelli
    • 3
  1. 1.IFES - Federal Institute of Education, Science and Technology of Espírito SantoSerraBrazil
  2. 2.Department of Electrical EngineeringUFES - Federal University of Espírito SantoVitóriaBrazil
  3. 3.INAUT - Institute of Automatics - UNSJ - National University of San Juan and CONICETSan JuanArgentina

Personalised recommendations