Journal of Intelligent & Robotic Systems

, Volume 85, Issue 2, pp 293–306 | Cite as

Pursuit-Evasion Games of High Speed Evader

  • M. V. Ramana
  • Mangal KothariEmail author


In this paper, we address pursuit-evasion games of high speed evader involving multiple pursuers and a single evader with holonomic constraints in an open domain. The existing work on this problem discussed the required formation and capture strategy for a group of pursuers. However, the formulation has mathematical errors and has raised concerns over the validity of the developed capture strategy. This paper uses the idea of Apollonius circle to develop an escape strategy for the high speed evader, resolving the shortfalls in the existing work. The strategy is built on a concept of perfectly encircled formation and the conditions required to construct the same are presented. The escape strategy contains two steps. Firstly, the evader employs a strategy that forces a gap in the formation against all the admissible strategies of a group of pursuers. In the second step, it uses this gap to escape. The strategy considers both direct and indirect gaps in the formations. The indirect gap is encountered when a group of three or four pursuers is employed to capture. The efficacy of the escape strategy is established using simulation results.


Pursuit-evasion games 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnan, S.N., Tsourdos, A., White, B.A.: Advances in Missile Guidance, Control, and Estimation. Automation and Control Engineering. CRC Press, 2012. Chapter 9, doi: 10.1201/b12503-10
  2. 2.
    Bao-Fu, F., Qi-Shu, P., Bing-Rong, H., Lei, D., Qiu-Bo, Z., Zhaosheng, Z.: Research on high speed evader vs. multi lower speed pursuers in multi pursuit-evasion games. Inf. Technol. J. 11(8), 989–997 (2012). doi: 10.3923/itj.2012.989.997 CrossRefGoogle Scholar
  3. 3.
    Bopardikar, S.D., Bullo, F., Hespanha, J.P.: On discrete-time pursuit-evasion games with sensing limitations. IEEE Trans. Robot. 24(6), 1429–1439 (2008). doi: 10.1109/TRO.2008.2006721 CrossRefGoogle Scholar
  4. 4.
    Conway, B.A., Pontani, M.: Numerical solution of the three-dimensional orbital pursuit-evasion game. J. Guid. Control Dyn. 32(2), 474–487 (2009). doi: 10.2514/1.37962 CrossRefGoogle Scholar
  5. 5.
    Evans, L., Souganidis, P.: Differential games and representation formulas for solutions of hamilton-jacobi-isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984). doi: 10.1512/iumj.1984.33.33040 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ho, Y., Bryson, A., Baron, S.: Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 10(4), 385–389 (1965). doi: 10.1109/TAC.1965.1098197 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huang, H., Zhang, W., Ding, J., Stipanovic, D.M., Tomlin, C.J.: Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers. In: Proceedings of the Fifieth IEEE Conference on Decision and Control and European Control Conference, pp 4835–4840. IEEE, Orlando, FL (2011), doi: 10.1109/CDC.2011.6161237
  8. 8.
    Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Wiley, New York (1965). chapter 6zbMATHGoogle Scholar
  9. 9.
    Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion in a polygonal environment. IEEE Trans. Robot. 21(5), 875–884 (2005). doi: 10.1109/TRO.2005.851373 CrossRefzbMATHGoogle Scholar
  10. 10.
    Jarmark, B., Hillberg, C.: Pursuit-evasion between two realistic aircraft. J. Guid. Control Dyn. 7(6), 690–694 (1984). doi: 10.2514/3.19914 CrossRefzbMATHGoogle Scholar
  11. 11.
    Jin, S., Qu, Z.: Pursuit-evasion games with multi-pursuer vs. one fast evader. In: Proceedings of the Eighth World Congress on Intelligent Control and Automation (WCICA), pp 3184–3189. IEEE, Jinan, China (2010), doi: 10.1109/WCICA.2010.5553770
  12. 12.
    Kothari, M., Manathara, J.G., Postlethwaite, I.: A cooperative pursuit-evasion game for nonholonomic systems. In: Proceedings of the Ninteenth IFAC World Congress, vol. 19, pp 1977–1984, Cape Town, South Africa (2014), doi: 10.3182/20140824-6-ZA-1003.01992
  13. 13.
    Makkapati, V.R.: Simulation: Evasion from a PEF of 4 pursuersGoogle Scholar
  14. 14.
    Makkapati, V.R.: Simulation: Evasion from a PEF of 5 pursuersGoogle Scholar
  15. 15.
    Makkapati, V.R.: Simulation: Evasion from a PEF of 6 pursuersGoogle Scholar
  16. 16.
    Mitchell, I.M., Bayen, R.M., Tomlin, C.J.: Bayen a time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005). doi:doi: 10.1109/TAC.2005.851439 doi: 10.1109/TAC.2005.851439 CrossRefGoogle Scholar
  17. 17.
    Pachter, M., games, Y.Y.: Simple-motion pursuit-evasion differential part 1: Stroboscopic strategies in collision-course guidance and proportional navigation. J. Optim. Theory Appl. 51(1), 95–127 (1986). doi: 10.1007/BF00938604 CrossRefzbMATHGoogle Scholar
  18. 18.
    Rajan, N., Prasad, U.R., Rao, N.J.: Pursuit-evasion of two aircraft in a horizontal plane. J. Guid. Control Dyn. 3(3), 261–267 (1980). doi: 10.2514/3.55982 CrossRefzbMATHGoogle Scholar
  19. 19.
    Ramana, M.V., Kothari, M.: A cooperative pursuit-evasion game of a high speed evader. In: Proceedings of the IEEE Fifty-Fourth Annual Conference on Decision and Control (CDC), pp 2969–2974. IEEE, Osaka, Japan (2015), doi: 10.1109/CDC.2015.7402668
  20. 20.
    Shinar, J., Gutman, S.: Three-dimensional optimal pursuit and evasion with bounded controls. IEEE Trans. Autom. Control 25(3), 492–496 (1980). doi: 10.1109/TAC.1980.1102372 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shneydor, N.A.: Missile Guidance and Pursuit: Kinematics, Dynamics and Control. Horwood Series in Engineering Science. Horwood Publishing Limited, Chichester, England (1998). Chapter 4CrossRefGoogle Scholar
  22. 22.
    Takei, R., Huang, H., Ding, J., Tomlin, C.J.: Time-optimal multi-stage motion planning with guaranteed collision avoidance via an open-loop game formulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp 323–329. IEEE, Saint Paul, MN (2012), doi: 10.1109/ICRA.2012.6225074
  23. 23.
    Vidal, R., Shakernia, O., Jin Kim, H., Shim, D.H., Sastry, S.: Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002). doi: 10.1109/TRA.2002.804040 CrossRefGoogle Scholar
  24. 24.
    Wang, X., Cruz Jr, J.B., Chen, G., Pham, K., Blasch, E.: Formation control in multi-player pursuit evasion game with superior evaders. In: Proceedings of the Defense Transformation and Net-Centric Systems, volume 6578. International Society for Optics and Photonics (2007), doi: 10.1117/12.723300
  25. 25.
    Mo, W., Chen, G., Cruz, J.B, Haynes, L., Pham, K., Blasch, E.: Multi-pursuer multievader pursuit-evasion games with jamming confrontation. J. Aerosp. Comput. Inform. Commun. 4(3), 693–706 (2007). doi: 10.2514/1.25329 CrossRefGoogle Scholar
  26. 26.
    Wei, M., Chen, G., Cruz, J.B., Haynes, L.S., Chang, M.-H., Blasch, E.: A decentralized approach to pursuer-evader games with multiple superior evaders in noisy environments. In: Proccedings of the IEEE Aerospace Conference, pp 1–10. IEEE, Big Sky, MT (2007), doi: 10.1109/AERO.2007.353051
  27. 27.
    Wei, M., Chen, G., Cruz Jr, J.B., Hayes, L., Chang, M.-H.: A decentralized approach to pursuer-evader games with multiple superior evaders. In: IEEE Intelligent Transportation Systems Conference, pp 1586–1591. IEEE (2006), doi: 10.1109/ITSC.2006.1707450
  28. 28.
    Zarchan, P.: Tactical and Strategic Missile Guidance, volume 239 of Progress in Astronautics and Aeronautics, 6th edn. American Institute of Aernautics and Astronautics, Inc., Reston, VA (2012). Chapters 2, 8Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations