Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 37–52 | Cite as

Robust Model-Free Control Applied to a Quadrotor UAV

  • Younes Al Younes
  • Ahmad Drak
  • Hassan NouraEmail author
  • Abdelhamid Rabhi
  • Ahmed El Hajjaji


The objective of this paper is to deal with a new technique based on Model-Free Control (MFC). The concept of this controller is to use a basic controller along with an ultra-local model to compensate for system’s uncertainties and disturbances. In this paper, a proposed algorithm is introduced based on an integrated structure between the Nonlinear Integral-Backstepping technique (NIB) and the MFC. The LQR, NIB, LQR-MFC, and NIB-MFC are implemented on a real quadrotor UAV. Various real-time flight tests are conducted to validate the importance of using the MFC side by side with NIB. The proposed combination shows robust performance compared to the other algorithms under fault-free and actuator fault conditions.


Integral backstepping technique Linear quadratic regulator Model-free control Nonlinear control quadrotor uav 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffmann, G., Rajnarayan, D. G., Waslander, S. L., Dostal, D., Jang, J. S., Tomlin, C. J.: The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In: Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, 2004, pp. 12. E. 4-121-10 Vol. 2.Google Scholar
  2. 2.
    Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. Lausanne Polytechnic University (2007)Google Scholar
  3. 3.
    Bouadi, H., Bouchoucha, M., Tadjine, M.: Sliding Mode Control based on Backstepping Approach for an UAV Type-Quadrotor. International Journal of Applied Mathematics & Computer Sciences, 4 (2008)Google Scholar
  4. 4.
    Fowers, SG: Stabilization and control of a quad-rotor micro-UAV using vision sensors. Brigham Young University. Department of Electrical and Computer Engineering (2008)Google Scholar
  5. 5.
    Petersen, C. F., Hansen, H., Larsson, S., Theilgaard Madsen, L. B., Rimestad, M.: Autonomous Hovering with a quadrotor helicopter. Aalborg universitet, aalborg (2008)Google Scholar
  6. 6.
    Raffo, G. V., Ortega, M. G., Rubio, F. R.: An integral predictive/nonlinear h8 control structure for a quadrotor helicopter. Automatica 46, 29–39 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colorado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on Hybrid Backstepping & Frenet-Serret theory. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp 1617–1622 (2010)Google Scholar
  8. 8.
    Fliess, M., Join, C.: Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?. In: 15th IFAC Symposium on System Identification (SYSID 2009) (2009)Google Scholar
  9. 9.
    Gédouin, P.-A., Join, C., Delaleau, E., Bourgeot, J.-M., Chirani, S.A., Calloch, S.: A new control strategy for shape memory alloys actuators. In: European Symposium on Martensitic Transformations, p 07007 (2009)Google Scholar
  10. 10.
    Michel, L., Join, C., Fliess, M., Sicard, P., Chériti, A.: Model-free control of dc/dc converters. In: 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), pp 1–8 (2010)Google Scholar
  11. 11.
    De Miras, J., Join, C., Fliess, M., Riachy, S., Bonnet, S.: Active magnetic bearing: A new step for model-free control. In: 52nd IEEE Conference on Decision and Control (2013)Google Scholar
  12. 12.
    Madonski, R., Herman, P.: Model-free control of a two-dimensional system based on uncertainty reconstruction and attenuation. In: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), pp 542–547 (2013)Google Scholar
  13. 13.
    Fliess, M., Join, C.: Model-free control. Int. J. Control. 86, 2228–2252 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Al Younes, Y., Drak, A., Noura, H., Rabhi, A., El Hajjaji, A.: Model-free control of a quadrotor vehicle. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1126–1131 (2014)Google Scholar
  15. 15.
    Al-Younes, Y.M., Al-Jarrah, M.A., Jhemi, A.A.: Linear vs. nonlinear control techniques for a quadrotor vehicle. In: 2010 7th International Symposium on Mechatronics and its Applications (ISMA), pp 1–10 (2010)Google Scholar
  16. 16.
    QUANSER, ”User Manual,” [Online]. Available: [Accessed 15 November 2013]
  17. 17.
    Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Robust Fault Diagnosis for Quadrotor UAVs Using Adaptive Thau Observer. J. Intell. Robot. Syst. 73, 573–588 (2014)CrossRefGoogle Scholar
  18. 18.
    Mboup, M., Join, C., Fliess, M.: Numerical differentiation with annihilators in noisy environment. Numer. Algorithm. 50, 439–467 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Quanser, ”QUARCReal-Time Control Software,” 13 January 2013. [Online]. Available: [Accessed 10 December 2013]
  20. 20.
    Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: Direct method based control system for an autonomous quadrotor. J. Intell. Robot. Syst. 60, 285–316 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Younes Al Younes
    • 1
    • 2
  • Ahmad Drak
    • 3
  • Hassan Noura
    • 4
    Email author
  • Abdelhamid Rabhi
    • 5
  • Ahmed El Hajjaji
    • 5
  1. 1.Mechanical Engineering Faculty at Higher Colleges of TechnologyAl AinUAE
  2. 2.University of Picardie Jules VerneAmiensFrance
  3. 3.Department of ComputerScience at Hochschule Bonn-Rhein-Sieg UniversitySankt AugustinGermany
  4. 4.Electrical Engineering Department at United Arab Emirates UniversityAl AinUAE
  5. 5.Information & System Lab - Control & Vehicle Group- at University of PicardieAmiensFrance

Personalised recommendations