Advertisement

Journal of Intelligent & Robotic Systems

, Volume 83, Issue 2, pp 271–288 | Cite as

Experimental Analysis of Variable Collective-pitch Rotor Systems for Multirotor Helicopter Applications

  • Robert PorterEmail author
  • Bijan Shirinzadeh
  • Man Ho Choi
Article

Abstract

This paper presents an experimental study of variable collective-pitch rotor systems for multirotor helicopter applications. An experimental research facility has been established to conduct this research. The facility enables the high-resolution measurement of forces and torques produced by rotor systems. The power consumption of the rotor system during experimentation can also be recorded. The experimental research facility also allows for the characterisation of the effect of rotor systems on multirotor helicopter performance. It is shown that the variable collective-pitch rotors have a significant performance advantage over fixed-pitch rotors when comparing thrust response, and multirotor helicopter step input response performance. Further, it is observed that variable collective-pitch rotors are more efficient in terms of energy consumption than comparable fixed-pitch rotors under similar operating conditions.

Keywords

Unmanned aerial vehicle Multirotor helicopter Variable collective-pitch rotor Experimental analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement learning to aerobatic helicopter flight. Adv. Neural Inf. Process. Syst. 19, 1 (2007)Google Scholar
  2. 2.
    Alaimo, A., Artale, V., Milazzo, C.L.R., Ricciardello, A.: PID controller applied to hexacopter flight. J. Intell. Robot. Syst. 73(1-4), 261–270 (2014)CrossRefGoogle Scholar
  3. 3.
    Astrom, K.J., Hagglund, T.: PID controllers: theory, design, and tuning, 2 edn. Instrument Society of America. Research Triangle Park, NC (1995)Google Scholar
  4. 4.
    Borenstein, J.: The hoverbot - an electrically powered flying robot (1992)Google Scholar
  5. 5.
    Boṡnak, M., Matko, D., BlaŻiċ, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Robot. Syst. 67(1), 43–60 (2012)CrossRefGoogle Scholar
  6. 6.
    Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, vol. 3, pp 2451–2456 (2004)Google Scholar
  7. 7.
    Bresciani, T.: Modelling, identification and control of a quadrotor helicopter. Unpublished masters thesis, lund university, lund, sweden (2008)Google Scholar
  8. 8.
    Choi, M.H., Porter, R., Shirinzadeh, B.: Comparison of attitude determination methodologies for implementation with 9DOF, low cost inertial measurement unit for autonomous aerial vehicles. Int. J. Intell. Mechatron. Robot. 3(2), 1–15 (2013)CrossRefGoogle Scholar
  9. 9.
    Clark, L., Shirinzadeh, B., Tian, Y., Oetomo, D.: Laser-based sensing, measurement, and misalignment control of coupled linear and angular motion for ultrahigh precision movement. IEEE/ASME Trans. Mechatron. 20(1), 84–92 (2015)CrossRefGoogle Scholar
  10. 10.
    Cook, M.V.: Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, 2nd. Elsevier Aerospace Engineering Series. Butterworth-Heinemann, Great Britain (2007)Google Scholar
  11. 11.
    Cutler, M., Ure, N.K., Michini, B., How, J.P.: Comparison of fixed and variable pitch actuators for agile quadrotors. In: AIAA Guidance, Navigation, and Control Conference (2010)Google Scholar
  12. 12.
    Gavrilets, V., Frazzoli, E., Mettler, B., Piedmonte, M., Feron, E.: Aggressive maneuvering of small autonomous helicopters: A human-centered approach. Int. J. Robot. Res. 20(10), 795–807 (2001)CrossRefGoogle Scholar
  13. 13.
    Hooper, R.: 3D-printing drone squirts foam to pick up waste. New Sci. 222(2968), 21 (2014)CrossRefGoogle Scholar
  14. 14.
    Kuethe, A., Chow, C.Y.: Foundations of Aerodynamics, 5th edn. Wiley, New York (1998)Google Scholar
  15. 15.
    Lee, D.J., Kaminer, I., Dobrokhodov, V., Jones, K.: Autonomous feature following for visual surveillance using a small unmanned aerial vehicle with gimbaled camera system. Int. J. Control Autom. Syst. 8(5), 957–966 (2010)CrossRefGoogle Scholar
  16. 16.
    Leishman, J.G.: Principles of helicopter aerodynamics. Cambridge Aerospace Series, Cambridge University Press, New York (2006)Google Scholar
  17. 17.
    Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of imu and marg orientation using a gradient descent algorithm. In: IEEE International Conference on Rehabilitation Robotics, 2011, pp 1–7. IEEE (2011)Google Scholar
  18. 18.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  19. 19.
    McCormack, A.S., Godfrey, K.R.: Rule-based autotuning based on frequency domain identification. IEEE Trans. Control Syst. Technol. 6(1), 43–61 (1998)CrossRefGoogle Scholar
  20. 20.
    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)CrossRefGoogle Scholar
  21. 21.
    Orsag, M., Cesic, J., Haus, T., Bogdan, S.: Spincopter wing design and flight control. J. Intell. Robot. Syst. 70(1-4), 165–179 (2013)Google Scholar
  22. 22.
    Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu, C., Mondragón, I.F., Campoy, P.: A general purpose configurable controller for indoors and outdoors gps-denied navigation for multirotor unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1-4), 387–400 (2014)Google Scholar
  23. 23.
    Pounds, P., Mahony, R.: Design principles of large quadrotors for practical applications. In: IEEE International Conference on Robotics and Automation, 2009, pp 3265–3270Google Scholar
  24. 24.
    Tan, R., Kumar, M.: Tracking of ground mobile targets by quadrotor unmanned aerial vehicles. Unmanned Syst. 02(02), 157–173 (2014)CrossRefGoogle Scholar
  25. 25.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Shirinzadeh, B.: High-order nonlinear differentiator and application to aircraft control. Mech. Syst. Signal Process. 46(2), 227–252 (2014)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Shirinzadeh, B.: Nonlinear multiple integrator and application to aircraft navigation. IEEE Trans. Aerosp. Electron. Syst. 50(1), 607–622 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Robert Porter
    • 1
    Email author
  • Bijan Shirinzadeh
    • 1
  • Man Ho Choi
    • 1
  1. 1.Robotics and Mechatronics Research LaboratoryMonash UniversityClaytonAustralia

Personalised recommendations