Advertisement

Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 145–162 | Cite as

A Learning-Based Fault Tolerant Tracking Control of an Unmanned Quadrotor Helicopter

  • Zhixiang Liu
  • Chi Yuan
  • Youmin ZhangEmail author
  • Jun Luo
Article

Abstract

This paper presents a novel learning-based fault tolerant tracking control approach by using an extended Kalman filter (EKF) to optimize a Mamdani fuzzy state-feedback tracking controller. First, a robust state-feedback tracking controller is designed as the baseline controller to guarantee the expected system performance in the fault-free condition. Then, the EKF is employed to regulate the shape of membership functions and rules of fuzzy controller to adapt with the working conditions automatically after the occurrence of actuator faults. Next, based on the modified fuzzy membership functions and rules, the baseline controller is readjusted to properly compensate the adverse effects of actuator faults and asymptotically stabilize the closed-loop system. Finally, in order to verify the effectiveness of the proposed method, several groups of numerical simulations are carried out by comparing the performance of a tracking control scheme and the presented technique. Simulation results demonstrate that the proposed method is effective for optimizing the fuzzy tracking controller on-line and counteracting the side effects of actuator faults, and the control performance is significantly improved as well.

Keywords

Unmanned quadrotor helicopter Extended Kalman filter Fuzzy logic Fault tolerant control Linear matrix inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y.M., Chamseddine, A.: Fault tolerant flight control techniques with application to a quadrotor UAV testbed. In: Automatic Flight Control Systems-Latest Developments, InTech, pp. 119–150 (2012)Google Scholar
  2. 2.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)CrossRefGoogle Scholar
  3. 3.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Tech. 12(4), 510–516 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)CrossRefGoogle Scholar
  6. 6.
    Yuan, C., Zhang, Y.M., Liu, Z.X.: A survey on technologies for automatic forest fire monitoring, detection and fighting using UAVs and remote sensing techniques. Can. J. For. Res. 45(7), 783–792 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Murphy, D.W., Cycon, J.: Applications for mini VTOL UAV for law enforcement. In: Enabling Technologies for Law Enforcement and Security, International Society for Optics and Photonics, pp. 35–43 (1999)Google Scholar
  8. 8.
    Metni, N., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 17(1), 3–10 (2007)CrossRefGoogle Scholar
  9. 9.
    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)CrossRefGoogle Scholar
  10. 10.
    Shakernia, O., Ma, Y., Koo, T.J., Sastry, S.: Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control. Asian J. Control 1(3), 128–145 (1999)CrossRefGoogle Scholar
  11. 11.
    Gomez-Balderas, J.E., Flores, G., Carrillo, L.G., Lozano, R.: Tracking a ground moving target with a quadrotor using switching control. J. Intell. Robot. Syst. 70(1–4), 65–78 (2013)CrossRefGoogle Scholar
  12. 12.
    Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1–4), 203–220 (2013)CrossRefGoogle Scholar
  13. 13.
    Guerrero, J.A., Garcia, P.C., Challal, Y.: Quadrotors formation control. J. Intell. Robot. Syst. 70(1–4), 221–231 (2013)CrossRefGoogle Scholar
  14. 14.
    Saska, M., Krajník, T., Vonásek, V., Kasl, Z., Spurný, V., Přeuc̆il, L.: Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups. J. Intell. Robot. Syst. 73 (1–4), 603–622 (2014)CrossRefGoogle Scholar
  15. 15.
    Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot. Syst. 70(1–4), 51–63 (2013)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control system. Annual Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, T., Zhang, Y.M., Gordon, B.W.: Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 227(1), 12–23 (2013)CrossRefGoogle Scholar
  19. 19.
    Amoozgar, M.H., Chamseddine, A., Zhang, Y.M.: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70 (1–4), 107–117 (2013)CrossRefGoogle Scholar
  20. 20.
    Chamseddine, A., Theilliol, D., Zhang, Y.M., Join, C., Rabbath, C.A.: Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle. Int. J. Adapt. Control Signal Proces. 29(1), 1–23 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Milhim, A.B., Zhang, Y.M., Rabbath, C.A.: Gain scheduling based PID controller for fault tolerant control of a quad-rotor UAV. In: AIAA Infotech Aerospace, pp. 20–22. Atlanta (2010)Google Scholar
  22. 22.
    Izadi, H.A., Gordon, B.W., Zhang, Y.M.: A data-driven fault tolerant model predictive control with fault identification. In: Proceedings of the Control and Fault-Tolerant Systems (SysTol) Conference, pp. 732–737. Nice, France (2010)Google Scholar
  23. 23.
    Simon, D.: Sum normal optimization of fuzzy membership functions. Intern. J. Uncertain. Fuzziness Knowl. Syst. 10(4), 363–384 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jiménez, A., Al-Hadithi, B.M., Matía, F.: Extended Kalman filter for the estimation and fuzzy optimal control of Takagi-Sugeno model. In: Fuzzy Control. Theory Appl., pp. 91–110 (2011)Google Scholar
  25. 25.
    Berstecher, R.G., Palm, R., Unbehauen, H.D.: An adaptive fuzzy sliding-mode controller. IEEE Trans. Ind. Electron 48(1), 18–31 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Tao, C.W., Taur, J.S., Chen, Y.C.: Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Sets Syst. 161(15), 2081–2103 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Truong, D.Q., Ahn, K.K.: Force control for press machines using an online smart tuning fuzzy PID based on a robust extended Kalman filter. Expert Syst. with Appl. 38(5), 5879–5894 (2011)CrossRefGoogle Scholar
  28. 28.
    Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45(2), 115–135 (2006)CrossRefGoogle Scholar
  29. 29.
    Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1–4), 27–38 (2013)CrossRefGoogle Scholar
  30. 30.
    Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley (2003)Google Scholar
  31. 31.
    Yu, X., Jiang, J.: Hybrid fault-tolerant flight control system design against partial actuator failures. IEEE Trans. Control Syst. Tech. 20(4), 871–886 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liao, F., Wang, J.L., Yang, G.H.: Reliable robust flight tracking control: An LMI approach. IEEE Trans. Control Syst. Tech. 10(1), 76–89 (2002)CrossRefGoogle Scholar
  33. 33.
    Apkarian, P., Tuan, H.D., Bernussou, J.: Continuous-time analysis, eigenstructure assignment, and H 2 synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans. Autom. Control 46(12), 1941–1946 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ghaoui, L.E.l., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Phila. Soc. Ind. Appl. Math. 15, 1 (1994)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)CrossRefGoogle Scholar
  36. 36.
    Ahn, K.K., Truong, D.Q.: Online tuning fuzzy PID controller using robust extended Kalman filter. J. Process Control 19(6), 1011–1023 (2009)CrossRefGoogle Scholar
  37. 37.
    Grewal, M.S., Andrews, A.P.: Kalman filtering: Theory and Practice using MATLAB. Wiley (2011)Google Scholar
  38. 38.
    Fan, J.H., Zhang, Y.M., Zheng, Z.Q.: Robust fault-tolerant control against time-varying actuator faults and saturation. Control Theory Appl. 6(14), 2198–2208 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Zhixiang Liu
    • 1
  • Chi Yuan
    • 1
  • Youmin Zhang
    • 1
    • 2
    Email author
  • Jun Luo
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringConcordia UniversityMontrealCanada
  2. 2.Department of Information and Control EngineeringXi’an University of TechnologyXi’anChina
  3. 3.School of Mechatronics Engineering and Automation and Shanghai Key Laboratory of Mechanical Automation and RoboticsShanghai UniversityShanghaiChina

Personalised recommendations