Journal of Intelligent & Robotic Systems

, Volume 82, Issue 1, pp 81–99 | Cite as

Incremental Learning of Skills in a Task-Parameterized Gaussian Mixture Model

  • Jose HoyosEmail author
  • Flavio Prieto
  • Guillem Alenyà
  • Carme Torras


Programming by demonstration techniques facilitate the programming of robots. Some of them allow the generalization of tasks through parameters, although they require new training when trajectories different from the ones used to estimate the model need to be added. One of the ways to re-train a robot is by incremental learning, which supplies additional information of the task and does not require teaching the whole task again. The present study proposes three techniques to add trajectories to a previously estimated task-parameterized Gaussian mixture model. The first technique estimates a new model by accumulating the new trajectory and the set of trajectories generated using the previous model. The second technique permits adding to the parameters of the existent model those obtained for the new trajectories. The third one updates the model parameters by running a modified version of the Expectation-Maximization algorithm, with the information of the new trajectories. The techniques were evaluated in a simulated task and a real one, and they showed better performance than that of the existent model.


Programming by demonstration Robot learning Incremental learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, T., Calinon, S., Caldwell, D.G.: Learning from demonstrations with partially observable task parameters. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 3309–3314 (2014)Google Scholar
  2. 2.
    Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Rob. Autom. Syst. 57, 469–483 (2009)CrossRefGoogle Scholar
  3. 3.
    Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Bruno Siciliano, O.K. (ed.) Handbook of Robotics, chap. 59, pp 1371–1394. Springer, Berlin (2008)Google Scholar
  4. 4.
    Breazeal, C., Scassellati, B.: Challenges in building robots that imitate people. In: Dautenhahn, K., Nehaniv, C.L. (eds.) Imitation in Animals and Artifacts, pp. 363–390. MIT Press (2002)Google Scholar
  5. 5.
    Calinon, S., Alizadeh, T., Caldwell, D.: On improving the extrapolation capability of task-parameterized movement models. In: IEEE International Conference on Intelligent Robots and Systems, pp. 610–616 (2013)Google Scholar
  6. 6.
    Calinon, S., Billard, A.: Incremental learning of gestures by imitation in a humanoid robot. In: IEEE Human Robot Interation Conference, pp. 255–262 (2007)Google Scholar
  7. 7.
    Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N.G., Caldwell, D.: Statistical dynamical systems for skills acquisition in humanoids. In: 8th IEEE-RAS International Conference on Humanoid Robots, pp. 323–329 (2012)Google Scholar
  8. 8.
    Cederborg, T., Li, M., Baranes, A., Oudeyer, P.Y.: Incremental local online gaussian mixture regression for imitation learning of multiple tasks. In: IEEE International Conference on Intelligent Robots and Systems, pp. 267–274 (2010)Google Scholar
  9. 9.
    Grollman, D., Jenkins, O.: Dogged learning for robots. In: IEEE International Conference on Robotics and Automation, pp. 2483–2488 (2007)Google Scholar
  10. 10.
    Hall, P., Hicks, Y.: A method to add gaussian mixture models, Technical Report, University of Bath, p. 18 (2004)Google Scholar
  11. 11.
    Kulic, D., Takano, W., Nakamura, Y.: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. The International Journal of Robotics Research 27(7), 761–784 (2008)CrossRefGoogle Scholar
  12. 12.
    Lee, D., Ott, C.: Incremental motion primitive learning by physical coaching using impedance control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4133–4140 (2010)Google Scholar
  13. 13.
    Lee, D., Ott, C.: Incremental kinesthetic teaching of motion primitives using the motion refinement tube. In: Autonomous Robot, vol. 31, pp. 115–131. Springer (2011)Google Scholar
  14. 14.
    Lee, S.H., Kim, H.K., Suh, I.H.: Incremental learning of primitive skills from demonstration of a task. In: 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 185–186 (2011)Google Scholar
  15. 15.
    Niekum, S., Chitta, S., Marthi, B., Osentoski, S., Barto, A.G.: Incremental semantically grounded learning from demonstration. In: Robotics: Science and Systems (2013)Google Scholar
  16. 16.
    Pardowitz, M., Knoop, S., Dillmann, R., Zollner, R.: Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(2), 322–332 (2007)CrossRefGoogle Scholar
  17. 17.
    Rozo, L., Calinon, S., Caldwell, D.: Learning force and position constraints in human-robot cooperative transportation. In: Robot and Human Interactive Communication, 2014 RO-MAN: The 23rd IEEE International Symposium on, pp. 619–624 (2014)Google Scholar
  18. 18.
    Rozo, L., Calinon, S., Caldwell, D.G., Jimenez, P., Torras, C.: Learning collaborative impedance-based robot behaviors. In: Conference on Artificial Intelligence (AAAI), pp. 1422–1428 (2013)Google Scholar
  19. 19.
    Townsend, W.T., Guertin, J.A.: Teleoperator slave - WAM design methodology. Industrial Robot: An International Journal 26(3), 167–177 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jose Hoyos
    • 1
    Email author
  • Flavio Prieto
    • 2
  • Guillem Alenyà
    • 3
  • Carme Torras
    • 3
  1. 1.Universidad del QuindíoArmeniaColombia
  2. 2.Universidad Nacional de ColombiaBogotaColombia
  3. 3.Institut de Robòtica i Informàtica Industrial CSIC-UPC Parc Tecnològic de BarcelonaBarcelonaSpain

Personalised recommendations