Journal of Intelligent & Robotic Systems

, Volume 82, Issue 1, pp 163–174 | Cite as

Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints

Categories (2), (3)
  • Muhammad Umer KhanEmail author
  • Shuai Li
  • Qixin Wang
  • Zili Shao


This paper mainly addresses formation control problem of non-holonomic systems in an optimized manner. Instead of using linearization to solve this problem approximately, we designed control laws with guaranteed global convergence by leveraging nonlinear transformations. Under this nonlinear transformation, consensus of non-holonomic robots can be converted into a stabilization problem, to which optimal treatment applies. This concept is then extended to the formation control and tracking problem for a team of robots following leader-follower strategy. A trajectory generator prescribes the feasible motion of virtual reference robot, a decentralized control law is used for each robot to track the reference while maintaining the formation. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function which is also generated using chained form differential equations. In order to witness the efficacy of the scheme, simulations results are presented for Unicycle and Car-like robots.


Non-holonomic systems Consensus Formation control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27, 37–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  3. 3.
    Biglarbegian, M.: A novel robust leader-following control design for mobile robots. J. Intell. Robot. Syst. 71, 391–402 (2013)CrossRefGoogle Scholar
  4. 4.
    Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Informat. 9(1), 427–438 (2013)CrossRefGoogle Scholar
  5. 5.
    Cao, Y.C., Ren, W.: Optimal linear consensus algorithm: An LQR perspective. IEEE Trans. Syst. Man, Cybern. B 40, 819–830 (2010)CrossRefGoogle Scholar
  6. 6.
    Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: On a class of hierarchical formations of unicycle and their internal dynamics. IEEE Trans. Autom. Control 57(4), 845–859 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: On the randezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dong, W., Farrell, J.A.: Co-operative control of multiple non-holonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, W.J., Guo, Y., Farrell, J.A.: Formation control of non-holonomic mobile robots. In: Proceeding Amer. Control Conf., pp 5602–5607 (2006)Google Scholar
  10. 10.
    Hausman, K., Mueller, J., Hariharan, A., Ayanian, N., Sukhatme, G.S.: Cooperative multi-robot control for target tracking with efficient switching of onboard sensing topologies. In: Proceeding IROS Workshop Taxonomies Interconnected Systems: Topology in Distributed Robotics (2014).
  11. 11.
    Huang, J., Farritor, S.M., Qadi, A., Goddard, S.: Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans. Mechatronics 11(2), 205–215 (2006)CrossRefGoogle Scholar
  12. 12.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kazerooni, E.S., Khorasani, K.: An lmi approach to optimal consensus seeking in multi-agent systems. In: Proceeding Amer. Control Conf., pp 4519–4524 (2009)Google Scholar
  14. 14.
    Khalil, H.: Nonlinear systems, 3rd edn. Prentice Hall (2001)Google Scholar
  15. 15.
    Kim, Y.S., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependant graph laplacian. IEEE Trans. Autom. Control 51, 115–120 (2006)MathSciNetGoogle Scholar
  16. 16.
    Kolmanovky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. Mag. 15(6), 20–36 (1995)CrossRefGoogle Scholar
  17. 17.
    La, H.M., Lim, R., Sheng, W.: Multi-robot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015)CrossRefGoogle Scholar
  18. 18.
    Leonard, N., Fiorelli, E.: Virtual leaders, artificial potentials and coordianted control of groups. In: Proceeding IEEE Int. Conf. Decis. and Control, vol. 3, pp 2968–2973 (2001)Google Scholar
  19. 19.
    Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lin, X., Stephen, B.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ma, C.Q., Li, T., Zhang, J.F.: Leader following consensus control for multi-agent systems under measurement noises. In: Proceeding World Congr. Int. Fed. Autom. Control, pp 1528–1533 (2008)Google Scholar
  23. 23.
    Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. ASME J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)CrossRefGoogle Scholar
  25. 25.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)CrossRefGoogle Scholar
  28. 28.
    Qu, Z.: Cooperative control of dynamical systems: applications to autonomous vehicles. Springer (2009)Google Scholar
  29. 29.
    Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56, 474–483 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ren, W., Beard, R.W., Mclain, T.W.: Coordination variables and consensus building in multiple vehicle systems. In: Proceeding Block Island Workshop Cooperative Control, vol. 390 (2007)Google Scholar
  31. 31.
    Roldão, V., Cunha, R., Cabecinhas, D., Silvestre, C., Oliveira, P.: A leader-following trajectory generator with application to quadrotor formation flight. Robot. Auton. Syst. 62, 1597–1609 (2014)CrossRefGoogle Scholar
  32. 32.
    Saber, R.O., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Scardovi, L., Sepulchre, R.: Synchronization in network of identical linear systems. Automatica 45(11), 2557–2562 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Schlanbusch, R., Kristiansen, R., Nicklasson, P.J.: Attitude reference generation for leader-follower formation with nadir pointing leader. In: Proceeding Amer. Control Conf (2010)Google Scholar
  35. 35.
    Siciliano, B., Khatib, O. (eds.): Handbook of robotics. Springer (2008)Google Scholar
  36. 36.
    Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overallping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  38. 38.
    Tian, Y., Sarkar, N.: Control of a mobile robot subject to wheel slip. J. Intell. Robot. Syst. 74, 915–929 (2014)CrossRefGoogle Scholar
  39. 39.
    Tuna, S.E.: Synchronizing linear systems via partial-state coupling. Automatica 44(8), 2179–2184 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, P.K.C., Hadaegh, F.Y.: Coordination and control of multiple microspacecraft moving in formation. J. Astronaut Sci. 44(3), 315–355 (1996)Google Scholar
  41. 41.
    Wang, Z., Gu, D.: Cooperative target tracking control of multiple robots. IEEE Trans. Ind. Electron. 59(8), 3232–3240 (2012)CrossRefGoogle Scholar
  42. 42.
    Canudas de Witt, C., Khennouf, H.: Theory of robot control. Springer, London (1996)CrossRefGoogle Scholar
  43. 43.
    Yamaguchi, H.: A distributed motion coordination of strategy for multiple non-holonomic mobile robots in co-operative hunting operations. Robot. Auton. Syst. 43(4), 257–282 (2003)CrossRefGoogle Scholar
  44. 44.
    Yang, E., Gu, D.: Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Trans. Mechatronics 12(2), 205–215 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Muhammad Umer Khan
    • 1
    • 2
    Email author
  • Shuai Li
    • 1
  • Qixin Wang
    • 1
  • Zili Shao
    • 1
  1. 1.Embedded Systems and CPS Laboratory, Department of ComputingThe Hong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.Department of Mechatronics EngineeringAir UniversityIslamabadPakistan

Personalised recommendations