Advertisement

Journal of Intelligent & Robotic Systems

, Volume 82, Issue 1, pp 39–50 | Cite as

Development of Realistic Pressure Distribution and Friction Limit Surface for Soft-Finger Contact Interface of Robotic Hands

  • Amin FakhariEmail author
  • Mehdi Keshmiri
  • Imin Kao
Article

Abstract

Various models have been presented for pressures distribution in the contact interface of a soft finger and object in the literature. These models have been proposed without considering the effect of the tangential forces which are usually exerted in the contact interface of a soft finger and object during grasping and manipulation. Having an accurate pressures distribution model across the contact interface is important for designing tactile sensors and improving the modeling of the friction limit surface (LS). In this paper, a new and more accurate model is proposed to describe the asymmetry of the pressure distribution in the contact interface of a hemispherical soft finger under both normal and tangential forces. This model is derived based upon observations in the previous literature stating that the contact interface would move and skew toward the direction of the tangential force. According to the proposed pressure distribution model in this study, an improved and more accurate LS is presented. The LS profile obtained by this model is compared with the corresponding results based on the previous models. The new results show that the consideration of the skewness or asymmetry in the pressure distribution (due to the tangential force) causes the LS profile to shrink compared with that constructed with symmetric pressure distribution assumption. This shrinkage, as a result of the skewness and asymmetry of the pressure distribution, makes the contact interface more vulnerable. Furthermore, this new model can also provide a more accurate tool for the analysis of grasping and manipulation involving soft contact interface.

Keywords

Soft finger Contact modeling Friction limit surface Grasping and manipulation Haptic perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Dover Publications (1964)Google Scholar
  2. 2.
    Arimoto, S., Nguyen, P., Han, H., Doulgeri, Z.: Dynamics and control of a set of dual fingers with soft tips. Robotica 18, 71–80 (2000)CrossRefGoogle Scholar
  3. 3.
    Bakhy, S.H.: Modeling of contact pressure distribution and friction limit surfaces for soft fingers in robotic grasping. Robotica 32(07), 1005–1015 (2014)CrossRefGoogle Scholar
  4. 4.
    Bicchi, A.: Intrinsic contact sensing for soft fingers. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp 968–973 (1990), doi: 10.1109/ROBOT.1990.126117
  5. 5.
    Flugge, W.: Viscoelasticity. Blaisdell Publishing Company (1967)Google Scholar
  6. 6.
    Fujimoto, I., Yamada, Y., Morizono, T., Umetani, Y., Maeno, T.: Development of artificial finger skin to detect incipient slip for realization of static friction sensation. In: Proceedings of IEEE International Conference Multisensor Fusion and Integration for Intelligent Systems, pp 15–20 (2003), doi: 10.1109/MFI-2003.2003.1232571
  7. 7.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer (1993)Google Scholar
  8. 8.
    Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction: Part 1. limit surface and moment function. Wear 143, 307–330 (1991)CrossRefGoogle Scholar
  9. 9.
    Hertz, H.: On the contact of rigid elastic solids and on hardness. Ch 6: Assorted Papers (1882)Google Scholar
  10. 10.
    Ho, V.A., Dao, D.V., Sugiyama, S., Hirai, S.: Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor. IEEE Trans. Robot. 27(3), 411–424 (2011)CrossRefGoogle Scholar
  11. 11.
    Howe, R., Cutkosky, M.: Sensing skin acceleration for slip and texture perception. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 145–150 (1989), doi: 10.1109/ROBOT.1989.99981
  12. 12.
    Howe, R., Cutkosky, M.: Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9(2), 140–151 (1993). doi: 10.1109/70.238278 CrossRefGoogle Scholar
  13. 13.
    Howe, R., Cutkosky, M.: Practical force-motion models for sliding manipulation. Int. J. Robot. Res. 15(6), 555–572 (1996)CrossRefGoogle Scholar
  14. 14.
    Howe, R., Kao, I., Cutkosky, M.: The sliding of robot fingers under combined torsion and shear loading. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 103–105 (1988)Google Scholar
  15. 15.
    Ikeda, A., Kurita, Y., Ueda, J., Matsumoto, Y., Ogasawara, T.: Grip force control for an elastic finger using vision-based incipient slip feedback. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp 810–815 (2004), doi: 10.1109/IROS.2004.1389452
  16. 16.
    Inoue, T., Hirai, S.: Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Trans. Robot. 22, 1273–1279 (2006)CrossRefGoogle Scholar
  17. 17.
    Inoue, T., Hirai, S.: Dynamic stable manipulation via soft-fingered hand. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 586–591 (2007)Google Scholar
  18. 18.
    Johansson, R., Westling, G.: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56(3), 550–564 (1984). doi: 10.1007/BF00237997 CrossRefGoogle Scholar
  19. 19.
    Johansson, R., Westling, G.: Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66(1), 141–154 (1987). doi: 10.1007/BF00236210 CrossRefGoogle Scholar
  20. 20.
    Johnson, K.L.: Surface interaction between elastically loaded bodies under tangential forces. Proc. R. Soc. Lond. A Math. Phys. Sci. 230(1183), 531–548 (1955)CrossRefGoogle Scholar
  21. 21.
    Johnson, K.L.: One hundred years of hertz contact. Proc. Institution Mech. Engineers 196(1), 363–378 (1982)CrossRefGoogle Scholar
  22. 22.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press (1985)Google Scholar
  23. 23.
    Kao, I., Yang, F.: Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Trans. Robot. Autom. 20(1), 132–135 (2004). doi: 10.1109/TRA.2003.820868 CrossRefGoogle Scholar
  24. 24.
    Kim, B.H.: Motion analysis of soft-fingertip manipulation tasks. Int. J. Control. Autom. Syst. 2(2), 228–237 (2004)Google Scholar
  25. 25.
    Koda, Y., Maeno, T.: Grasping force control in master-slave system with partial slip sensor. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 4641–4646 (2006), doi: 10.1109/IROS.2006.282173
  26. 26.
    Kurita, Y., Ikeda, A., Ueda, J., Matsumoto, Y., Ogasawara, T.: A novel pointing device utilizing the deformation of the fingertip. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp 13–18 (2003), doi: 10.1109/IROS.2003.1250598
  27. 27.
    Kurita, Y., Ikeda, A., Ueda, J., Ogasawara, T.: A fingerprint pointing device utilizing the deformation of the fingertip during the incipient slip. IEEE Trans. Robot. 21(5), 801–811 (2005). doi:  10.1109/TRO.2005.847568 CrossRefGoogle Scholar
  28. 28.
    Macefield, V., Johansson, R.: Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp. Brain Res. 108(1), 172–184 (1996). doi: 10.1007/BF00242914 Google Scholar
  29. 29.
    Maeno, T., Hiromitsu, S., Kawai, T.: Control of grasping force by detecting stick/slip distribution at the curved surface of an elastic finger. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp 3895–3900 (2000), doi: 10.1109/ROBOT.2000.845338
  30. 30.
    Maeno, T., Kawai, T., Kobayashi, K.: Analysis and design of a tactile sensor detecting strain distribution inside an elastic finger. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp 1658–1663 (1998), doi: 10.1109/IROS.1998.724836
  31. 31.
    Masuda, R., Hasegawa, K., Osako, K.: Slip sensor of industrial robot and its application. Elect. Eng. in Jpn. 96(5), 129–136 (1976)CrossRefGoogle Scholar
  32. 32.
    Maxwell, J.C.: On the dynamical theory of gases. Phil. Trans. R. Soc. London 157, 49–88 (1867). doi: 10.1098/rstl.1867.0004 CrossRefGoogle Scholar
  33. 33.
    Melchiorri, C.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatron. 5(3), 235–243 (2000). doi: 10.1109/3516.868914 CrossRefGoogle Scholar
  34. 34.
    Mindlin, R.D.: Compliance of elastic bodies in contact. ASME J. Appl. Mechanics 17, 259–268 (1949)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Mingrino, A., Bucci, A., Magni, R., Dario, P.: Slippage control in hand prostheses by sensing grasping forces and sliding motion. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp 1803–1809 (1994), doi: 10.1109/IROS.1994.407614
  36. 36.
    Son, J., Monteverde, E., Howe, R.: A tactile sensor for localizing transient events in manipulation. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 471–476 (1994), doi: 10.1109/ROBOT.1994.351253
  37. 37.
    Tada, M., Imai, M., Ogasawara, T.: Development of simultaneous measurement system of incipient slip and grip/load force. In: Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, pp 57–62 (2000), doi: 10.1109/ROMAN.2000.892470
  38. 38.
    Tatara, Y.: Large deformations of a rubber sphere under diametral compression: Part 1: Theoretical analysis of press approach, contact radius and lateral extension. JSME Int. J. 36(2), 190–196 (1993)Google Scholar
  39. 39.
    Tiezzi, P., Kao, I.: Characteristics of contact and limit surface for viscoelastic fingers. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 1365–1370 (2006)Google Scholar
  40. 40.
    Tiezzi, P., Kao, I.: Modeling of viscoelastic contacts and evolution of limit surface for robotic contact interface. IEEE Trans. Robot. 23(2), 206–217 (2007)CrossRefGoogle Scholar
  41. 41.
    Tremblay, M., Cutkosky, M.: Estimating friction using incipient slip sensing during a manipulation task. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp 429–434 (1993), doi: 10.1109/ROBOT.1993.292018
  42. 42.
    Ueda, J., Ikeda, A., Ogasawara, T.: Grip-force control of an elastic object by vision-based slip-margin feedback during the incipient slip. IEEE Trans. Robot. 21(6), 1139–1147 (2005). doi:  10.1109/TRO.2005.853496 CrossRefGoogle Scholar
  43. 43.
    Ueda, J., Ishida, Y., Kondo, M., Ogasawara, T.: Development of the naist-hand with vision-based tactile fingertip sensor. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 2332–2337 (2005), doi: 10.1109/ROBOT.2005.1570461
  44. 44.
    Watanabe, N., Obinata, G.: Grip force control based on the degree of slippage using optical tactile sensor. In: International Symposium on Micro-NanoMechatronics and Human Science, pp 466–471 (2007), doi: 10.1109/MHS.2007.4420900
  45. 45.
    Xydas, N., Kao, I.: Modeling of contact mechanics with experimental results for soft fingers. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp 488–493 (1998)Google Scholar
  46. 46.
    Xydas, N., Kao, I.: Modeling of contact mechanics and friction limit surface for soft fingers in robotics, with experimental results. Int. J. Robot. Res. 18(8), 941–950 (1999)CrossRefGoogle Scholar
  47. 47.
    Xydas, N., Kao, I.: Influence of material properties and fingertip size on the power-law equation for soft fingers. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp 1285–1290 (2000)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical EngineeringState University of New York at Stony BrookStony BrookUSA

Personalised recommendations