Advertisement

Minimizing Human-Exoskeleton Interaction Force Using Compensation for Dynamic Uncertainty Error with Adaptive RBF Network

  • Mien Ka Duong
  • Hong ChengEmail author
  • Huu Toan Tran
  • Qiu Jing
Article

Abstract

A critical issue in the control of exoskeleton systems is unknown nonlinear dynamic properties of the system. The improper estimation of those unknown properties can cause considerable human-exoskeleton interaction force during human’s movements. It is really challenging to exactly estimate the parameters of dynamic models. In this paper, we propose a novel exoskeleton control algorithm to both compensate for the dynamic uncertainty error and minimize the human-exoskeleton interaction force. We have built a virtual torque controller based on dynamic models of a lower exoskeleton and have used an approximation of a Radial Basis Function (RBF) neural network to compensate for the dynamic uncertainty error. By doing so, we avoid using complicated force sensors installed on the human-exoskeleton interface and minimize the physical Human-Robot Interaction (pHRI) force. Moreover, we introduce the prototype of our exoskeleton system, called ‘PRMI’ exoskeleton system. Finally, we validated the proposed algorithm on this system, and the experimental results show that the proposed control algorithm provides a good control quality for the ‘PRMI’ exoskeleton system by compensating for dynamic uncertainty error.

Keywords

Exoskeleton RBF networks Virtual torque control Human-exoskeleton interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anam, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. In: International symposium on robotics and intelligent sensors (IRIS 2012), p 988994 (2012)Google Scholar
  2. 2.
    Kundu, A.S, Mazumder, O., Chattaraj, R., Bhaumik, S.: Trajectory generation for myoelectrically controlled lower limb active knee exoskeleton. In: Seventh international conference on contemporary computing (IC3), pp 230–235 (2014)Google Scholar
  3. 3.
    Lu, R., Li, Z., Su, C.-Y., Xue, A.: Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Trans. Ind. Electron. 6(7), 3776–3785 (2014)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Kim, H., Jang, J., Park, S.: A simulation study on the control of lower extremity exoskeleton for assistance of human locomotion, 44th international symposium on robotics (isr). In: 44th international symposium on robotics (ISR), pp 1–4 (2013)Google Scholar
  5. 5.
    Onen, U., Botsali, F.M., Kalyoncu, M., Tinkir, M., Yilmaz, N., Sahin, Y.: Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Trans. Mechatron. 19(2), 623–632 (2014)CrossRefGoogle Scholar
  6. 6.
    Veneman, J.F., Van der Kooij, H, al, el: Can isps and p2p users cooperate for improved performance IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)CrossRefGoogle Scholar
  7. 7.
    Christine, A.C., Herman, V.K.: Assistive and rehabilitation robotics. J. Behav. Robot. 2(4), 175–175 (2011)Google Scholar
  8. 8.
    Erol, D., Sarkar, N.: Intelligent control for robotic rehabilitation after stroke. J. Intell. Robot. Syst. 50(4), 341–360 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kazerooni, H.: Human augmentation and exoskeleton systems in berkeley. Int. J. Humanoid Robotics 4(3), 575–605 (2007)CrossRefGoogle Scholar
  10. 10.
    Walsh, C.J., Endo, K., Herr, H.: Aquasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Robotics 4(3), 487–506 (2007)CrossRefGoogle Scholar
  11. 11.
    Low, K.H., Liu, X., Haoyong, Y.: Development of ntu wearable exoskeleton system for assistive technologies. In: IEEE International Conference on Mechatronics and Automation, pp 1099–1106 (2005)Google Scholar
  12. 12.
    Low, K.H., Liu, X., Haoyong, Y.: Design and implementation of ntu wearable exoskeleton as an enhancement and assistive device. In: IEEE international conference on mechatronics and automation, pp 209–225 (2005)Google Scholar
  13. 13.
    Yang, Z., Zhu, Y., Yang, X., Zhang, Y.s: Impedance control of exoskeleton suit based on adaptive rbf neural network. In: International conference on intelligent human-machine systems and cybernetics, pp 182–187 (2009)Google Scholar
  14. 14.
    Hyon, S.-H., Hayashi, T., Yagi, A., Noda, T., Morimoto, J.: Design of hybrid drive exoskeleton robot xor2. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4642–4648 (2013)Google Scholar
  15. 15.
    Kazerooni, H.: Exoskeletons for human power augmentation. In: IEEE/RSJ international conference on intelligent robots and systems(IROS 2005), pp 3459–3464 (2005)Google Scholar
  16. 16.
    Kazerooni, H., Chu, A., Steger, R.: That which does not stabilize, will only make us stronger. Int. J. Robot. Res. 26(1), 75–89 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kazerooni, J.L., Racine, H., Huang, L., Steger, R.: On the control of the berkeley lower extremity exoskeleton (bleex). In: Proceedings of the 2005 IEEE international conference on robotics and automation, (ICRA), pp 4353–4360 (2005)Google Scholar
  18. 18.
    Kazerooni, H., Huang, L., Steger, R.: Hybrid control of the berkeley lower extremity exoskeleton (bleex). Int. J. Robot. Res. 25(5–6), 561–573 (2006)CrossRefGoogle Scholar
  19. 19.
    Yang, Z., Gui, L., Yang, X., Wenjin, G.: Simulation research of exoskeleton suit based on neural network sensitivity amplification control. In: Chinese control and decision conference, (CCDC 2008), pp 3340–3344 (2008)Google Scholar
  20. 20.
    Sankai, Y.: Hal: Hybrid assistive limb based on cybernics. Springer Tracts in Advanced Robotics 66, 25–34 (2011)CrossRefGoogle Scholar
  21. 21.
    Wang, S.W., Yu, D.W., Yu, D.L.: Compensation for unmatched uncertainty with adaptive rbf network. Int. J. Eng. Sci. Technol. 3(6), 18–34 (2011)Google Scholar
  22. 22.
    Schilling, R.J., Carroll, J.J., Al-Ajlouni, A.F.: Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans. Neural Netw. 12(1), 1–15 (2001)CrossRefGoogle Scholar
  23. 23.
    DAmico, A., Ippoliti, G., Longhi, S.: A multiple models approach for adaptation and learning in mobile robots control. J. Intell. Robot. Syst. 47(1), 3–31 (2006)CrossRefGoogle Scholar
  24. 24.
    Anderson, R.T., Chowdhary, G., Johnson, Eric N.: Comparison of rbf and shl neural network based adaptive control. J. Intell. Robot. Syst. 54(1–3), 183–199 (2009)CrossRefGoogle Scholar
  25. 25.
    Prabhu, S.M., Devendra, P.G.: Artificial neural network based robot control: an overview. J. Intell. Robot. Syst. 15(4), 333–365 (1996)CrossRefGoogle Scholar
  26. 26.
    Ni, J., Song, Q.: Pruning based robust backpropagation training algorithm for rbf network tracking controller. J. Intell. Robot. Syst. 48, 375–396 (2007)CrossRefGoogle Scholar
  27. 27.
    Khalil, H.K.: Chapter 4: lyapunov stability, nonlinear system, 3rd edn. Prentice Hall (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mien Ka Duong
    • 1
    • 2
  • Hong Cheng
    • 1
    Email author
  • Huu Toan Tran
    • 1
  • Qiu Jing
    • 1
  1. 1.Center for Robotics, School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaSichuanPeople’s Republic of China
  2. 2.Faculty of Electronic TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam

Personalised recommendations