Advertisement

Journal of Intelligent & Robotic Systems

, Volume 82, Issue 1, pp 3–19 | Cite as

Virtual Impedance Control for Safe Human-Robot Interaction

  • Sheng-Yen Lo
  • Ching-An Cheng
  • Han-Pang HuangEmail author
Article

Abstract

Collision avoidance is essential for safe robot manipulation. Especially with humans around, robots should work only when safety can be robustly guaranteed. In this paper, we propose using virtual impedance control for reactive, smooth, and consistent collision avoidance that interferes minimally with the original task. The virtual impedance control operates in the risk space, a vector space describing the possibilities of all forthcoming collisions, and is designed to elude all risks in a consistent response in order to create assuring human-robot interaction experiences. The proposed scheme intrinsically handles kinematic singularity and the activation of avoidance using a boundary layer defined on the spectrum of Jacobian. In cooperation with the original controller, the proposed avoidance scheme provides a proof of convergence if the original controller is stable with and without projection. In simulations and experiments, we verified the characteristics of the proposed control scheme and integrated the system with Microsoft Kinect to monitor the workspace for real-time collision detection and avoidance. The results show that the proposed approach is suitable for robot operation with humans nearby.

Keywords

Safe human-robot interaction Collision avoidance Risk space Virtual impedance control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(AVI 2.55 MB)

(AVI 5.25 MB)

References

  1. 1.
    Pedrocchi, N., Vicentini, F., Matteo, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 10(26) (2013)Google Scholar
  2. 2.
    Shi, J., Jimmerson, G., Pearson, T., Menassa, R.: Levels of human and robot collaboration for automotive manufacturing. In: Workshop Perform. Metr. Intell. Syst., Maryland, pp. 95–100 (2012)Google Scholar
  3. 3.
    Matthias, B., Kock, S., Jerregard, H., Kallman, M., Lundberg, I., Mellander, R.: Safety of collaborative industrial robots: certification possibilities for a collaborative assembly robot concept (2011)Google Scholar
  4. 4.
    Heyer, C.: Human-robot interaction and future industrial robotics applications. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, pp. 4749–4754 (2010)Google Scholar
  5. 5.
    Haddadin, S., Parusel, S., Belder, R., Albu-Schaffer, A., Hirzinger, G.: Safe acting and manipulation in human environments: a key concept for robots in our society. In: IEEE Workshop Adv. Robot. Its Soc. Impacts, Half-Moon Bay, pp. 72–75 (2011)Google Scholar
  6. 6.
    Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: IEEE Int. Conf. Autom. Sci. Eng., Taipei, pp. 339–344 (2014)Google Scholar
  7. 7.
    Mitka, E., Gasteratos, A., Kyriakoulis, N., Mouroutsos, S.G.: Safety certification requirements for domestic robots. Saf. Sci. 50(8), 1888–1897 (2012)CrossRefGoogle Scholar
  8. 8.
    Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, pp. 197-204 (2013)Google Scholar
  9. 9.
    Sentis, L., Park, J., Khatib, O.: Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Tran. Robot. 26(3), 483–501 (2010)CrossRefGoogle Scholar
  10. 10.
    Taïx, M., Flavigné, D., Ferré, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst. 67(3–4), 285–306 (2012)CrossRefGoogle Scholar
  11. 11.
    Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. J. Robot. Auton. Syst. 6(1), 105–122 (1990)CrossRefGoogle Scholar
  12. 12.
    Dietrich, A., Wimbock, T., Albu-Schaffer, A., Hirzinger, G.: Integration of reactive, torque-based self-collision avoidance into a task hierarchy. IEEE Tran. Robot. 28(5), 1278–1293 (2012)CrossRefGoogle Scholar
  13. 13.
    Petric, T., Lajpah, L.: Smooth continuous transition between tasks on a kinematic control level: obstacle avoidance as a control problem. J. Robot. Auton. Syst. 61(8), 948–959 (2013)CrossRefGoogle Scholar
  14. 14.
    Dietrich, A., Wimbock, T., Taubig, H., Albu-Schaffer, A., Hirzinger, G.: Extensions to reactive self-collision avoidance for torque and position controlled humanoids. In: IEEE Int. Conf. Robot. Autom., Shanghai, pp. 3455–3462 (2011)Google Scholar
  15. 15.
    Flacco, F., Kroeger, T., De Luca, A., Khatib, O.: A Depth Space Approach for Evaluating Distance to Objects. J. Intell. Robot. Syst., 1–16 (2014)Google Scholar
  16. 16.
    Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., Kheddar, A.: Real-time (self)-collision avoidance task on a hrp-2 humanoid robot. In: IEEE Int. Conf. Robot. Autom. Pasadena, pp. 3200–3205 (2008)Google Scholar
  17. 17.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Brock, O., Khatib, O., Viji, S.: Task-consistent obstacle avoidance and motion behavior for mobile manipulation. In: IEEE Int. Conf. Robot. Autom., Washington, pp. 388–393 (2002)Google Scholar
  19. 19.
    Dietrich, A., Wimbock, T., Albu-Schaffer, A.: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco, pp. 3199–3206 (2011)Google Scholar
  20. 20.
    Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A depth space approach to human-robot collision avoidance. In: IEEE Int. Conf. Robot. Autom., Saint Paul, pp. 338–345 (2012)Google Scholar
  21. 21.
    García-Delgado, L., Noriega, J., Berman-Mendoza, D., Leal-Cruz, A., Vera-Marquina, A., Gómez-Fuentes, R., García-Juárez, A., Rojas-Hernández, A., Zaldívar-Huerta, I.: Repulsive Function in Potential Field Based Control with Algorithm for Safer Avoidance. J. Intell. Robot. Syst., 1–12 (2014)Google Scholar
  22. 22.
    Haddadin, S., Belder, R., Albu-Schäffer, A.: Dynamic motion planning for robots in partially unknown environments. In: IFAC World Congres., Milano, Italy, p 2011Google Scholar
  23. 23.
    Scott, N.A., Carignan, C.R.: A line-based obstacle avoidance technique for dexterous manipulator operations. In: IEEE Int. Conf. Robot. Autom., Pasadena, pp. 3353–3358 (2008)Google Scholar
  24. 24.
    Sentis, L., Khatib, O.: A whole-body control framework for humanoids operating in human environments. In: IEEE Int. Conf. Robot. Autom., Orlando, pp. 2641–2648 (2006)Google Scholar
  25. 25.
    Dietrich, A., Wimbock, T., Albu-Schaffer, A., Hirzinger, G.: Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robot. Autom. Mag. 19(2), 20–33 (2012)CrossRefGoogle Scholar
  26. 26.
    Haddadin, S., Parusel, S., Belder, R., Vogel, J., Rokahr, T., Albu-Schäffer, A., Hirzinger, G.: Holistic design and analysis for the human-friendly robotic co-worker. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, pp. 4735–4742 (2010)Google Scholar
  27. 27.
    Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Rossmann, J., Albu-Schaffer, A., Hirzinger, G.: Real-time reactive motion generation based on variable attractor dynamics and shaped velocities. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. Taipei, pp. 3109–3116 (2010)Google Scholar
  28. 28.
    De Santis, A., Albu-Schäffer, A., Ott, C., Siciliano, B., Hirzinger, G.: The skeleton algorithm for self-collision avoidance of a humanoid manipulator. In: IEEE/ASME Int. Conf. Adv. Intell. Mech., Zurich, pp. 1–6 (2007)Google Scholar
  29. 29.
    Sugiura, H., Gienger, M., Janssen, H., Goerick, C.: Real-time self collision avoidance for humanoids by means of nullspace criteria and task intervals. In: IEEE/RAS Int. Conf. Humanoid Robot., Genova, pp. 575–580 (2006)Google Scholar
  30. 30.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Tran. Robot. Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  31. 31.
    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Tran. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
  32. 32.
    Caccavale, F., Chiaverini, S., Siciliano, B.: Second-order kinematic control of robot manipulators with Jacobian damped least-squares inverse: theory and experiments. IEEE/ASME Tran. Mech. 2(3), 188–194 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations