Differential Evolution Markov Chain Filter for Global Localization

  • Luis Moreno
  • Fernando MartínEmail author
  • María Luisa Muñoz
  • Santiago Garrido


A key challenge for an autonomous mobile robot is to estimate its location according to the available information. A particular aspect of this task is the global localization problem. In our previous work, we developed an algorithm based on the Differential Evolution method that solves this problem in 2D and 3D environments. The robot’s pose is represented by a set of possible location estimates weighted by a fitness function. The Markov Chain Monte Carlo algorithms have been successfully applied to multiple fields such as econometrics or computing science. It has been demonstrated that they can be combined with the Differential Evolution method to solve efficiently many optimization problems. In this work, we have combined both approaches to develop a global localization filter. The algorithm performance has been tested in simulated and real maps. The population requirements have been reduced when compared to the previous version.


Differential evolution Markov chain Monte Carlo Optimization method Global localization Mobile robots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leonard, J.J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7, 376–382 (1991)CrossRefGoogle Scholar
  2. 2.
    Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary filter for robust mobile robot localization. Robot. Auton. Syst. 54(7), 590–600 (2006)CrossRefGoogle Scholar
  4. 4.
    Martín, F., Moreno, L., Garrido, S., Blanco, D.: High-accuracy global localization filter for three-dimensional environments. Robotica 30, 363–378 (2011)CrossRefGoogle Scholar
  5. 5.
    Martín, F., Moreno, L., Blanco, D., Muñoz, M.L.: Kullback—Leibler divergence-based global localization for mobile robots. Robot. Auton. Syst. 62, 120–130 (2014)CrossRefGoogle Scholar
  6. 6.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)CrossRefGoogle Scholar
  8. 8.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov chain monte carlo in practice. Chapman & Hall, London (1996)zbMATHGoogle Scholar
  10. 10.
    Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Braak, C.J.F.T.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Burgard, W., Fox, D., Henning, D., Schmidt, T.: Estimating the absolute position of a mobile robot using position probability grids. In: Proceedings of the fourteenth national conference on artificial intelligence (AAAI’96) (1996)Google Scholar
  13. 13.
    Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filters for location estimation. Pervasive Computing 2, 24–33 (2003)CrossRefGoogle Scholar
  14. 14.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’00) (2000)Google Scholar
  15. 15.
    Gamallo, C., Regueiro, C.V., Quintía, P., Mucientes, M.: Omnivision-based KLD-Monte Carlo Localization. Robot. Auton. Syst. 58, 295–305 (2010)CrossRefGoogle Scholar
  16. 16.
    Zhang, L., Zapata, R., Lepinay, P.: Self-adaptive Monte-Carlo localization for mobile robots using range sensors. In: Proceedings of the lEEW/RSJ international conference on intelligent robots and system (IROS’09) (2009)Google Scholar
  17. 17.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11(11), 391–427 (1999)zbMATHGoogle Scholar
  18. 18.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128, 99–141 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ronghua, L., Bingrong, H.: Coevolution based adaptive Monte Carlo localization (CEAMCL). Int. J. Adv. Robot. Syst. 1(3), 183–190 (2004)Google Scholar
  20. 20.
    Biswas, J., Coltin, B., Veloso, M.: Corrective gradient refinement for mobile robot localization. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’11) (2011)Google Scholar
  21. 21.
    Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient Estimation of Accurate Maximum Likelihood Maps in 3D. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’07) (2007)Google Scholar
  22. 22.
    Montemerlo, M., Thrun, S.: FastSLAM 2.0, FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics (2007)Google Scholar
  23. 23.
    Zhang, L., Zapata, R., Lépinay, P.: Self-adaptive Monte Carlo localization for mobile robots using range finders. Robotica 30, 229–244 (2011)CrossRefGoogle Scholar
  24. 24.
    Moreno, L., Blanco, D., Muñoz, M. L., Garrido, S.: L1—L2-norm comparison in global localization of mobile robots. Robot. Auton. Syst. 59, 597–610 (2011)CrossRefGoogle Scholar
  25. 25.
    Donoso-Aguirre, F., Bustos-Salas, J.P., Torres-Torriti, M., Guesalaga, A.: Mobile robot localization using the Hausdorff distance. Robotica 26, 129–141 (2008)CrossRefGoogle Scholar
  26. 26.
    Fox, D., Burgard, W.: Active Markov localization for mobile robots. Robot. Auton. Syst. 25, 195–207 (1998)CrossRefGoogle Scholar
  27. 27.
    Arras, K.O., Castellanos, J.A., Siegwart, R.: Feature-based multi-hypothesis localization and tracking for mobile robots using geeometric constraints. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’02), (Washington DC, USA), pp 1371–1377 (2002)Google Scholar
  28. 28.
    Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary computation I: basic algorithms and operators. IOP Publishing Ltd (2000)Google Scholar
  29. 29.
    Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary computation II: advanced algorithms and operators. IOP Publishing Ltd (2000)Google Scholar
  30. 30.
    Vahdat, A.R., Ashrafoddin, N.N., Ghidary, S.S.: Mobile robot global localization using differential evolution and particle swarm optimization. In: Proceedings of the congress on evolutionary computation (CEC’07) (2007)Google Scholar
  31. 31.
    Lisowski, M.: Differential evoution approach to the localization problem for mobile robots. Master’s thesis, Technical University of Denmark (2009)Google Scholar
  32. 32.
    Lisowski, M., Fan, Z., Ravn, O.: Differential evolution to enhance localization of mobile robots. In: Proceedings of the 2011 IEEE international conference on fuzzy systems, (Taipei, Taiwan), pp 241–247 (June 2011)Google Scholar
  33. 33.
    Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–78 (2001)CrossRefGoogle Scholar
  34. 34.
    Mirkhania, M., Forsatib, R., Shahric, M., Moayedikiad, A.: A novel efficient algorithm for mobile robot localization, Robotics and Autonomous Systems (2013)Google Scholar
  35. 35.
    Kwok, N.M., Liu, D.K., Dissanayake, G.: Evolutionary computing based mobile robot localization. Artif. Intell. 19, 857–868 (2006)Google Scholar
  36. 36.
    Cox, I.J., Leonard, J.J.: Modeling a dynamic environment using a Bayesian multi hypothesis approach. Artif. Intell. 66, 311–44 (1994)CrossRefzbMATHGoogle Scholar
  37. 37.
    Austin, D.J., Jensfelt, P.: Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’00), (San Francisco, USA), pp 1036–1041 (2000)Google Scholar
  38. 38.
    Jensfelt, P., Kristensen, S.: Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans. Robot. Autom. 17(5), 748–760 (2001)CrossRefGoogle Scholar
  39. 39.
    He, T., Hirose, S.: A global localization approach based on Line-segment relation matching technique. Robot. Auton. Syst. 60, 95–112 (2012)CrossRefGoogle Scholar
  40. 40.
    Pfaff, P., Plagemann, C., Burgard, W.: Gaussian mixture models for probabilistic localization. In: Proceedings of IEEE international conference on robotics and automation (ICRA’08), (Pasadena, CA, USA) (2008)Google Scholar
  41. 41.
    Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses unscented kalman filtering for robust localization, RoboCup 2011: Robot Soccer World Cup XV (pp. 222-233) (2012)Google Scholar
  42. 42.
    Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd edn. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  43. 43.
    Geweke, J.: Bayesian inference in econometric models using Monte Carlo intergration. Econometrica 24, 1317–1399 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rubinstein, R.Y.: Simulation and the Monte Carlo method. John Wiley & Sons (1981)Google Scholar
  45. 45.
    Rubin, D.B.: Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3(1), 395–402 (1988)zbMATHGoogle Scholar
  46. 46.
    Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direction sampling. The Statistician 43, 179–189 (1994)CrossRefzbMATHGoogle Scholar
  47. 47.
    Liu, J.S., Liang, F., Wong, W.H.: The use of multipletry method and local optimization in metropolis sampling. J. Am. Stat. Assoc. 94, 121–134 (2000)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Geyer, C.J.: Markov chain Monte Carlo maximum likelihood, in computing science and statistics. In: Keramigas, E. M. (ed.) Proceedings of the 23rd symposium on the interface, pp 153–163 (1991)Google Scholar
  49. 49.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)CrossRefGoogle Scholar
  50. 50.
    Liang, F.M., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Kou, S.C., Zhou, Q., Wong, W.H.: Equienergy sampler with applications to statistical inference and statistical mechanics. Ann. Stat. 32, 1581–1619 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Liang, F.M.: Dynamically weighted importance sampling in Monte Carlo computation. J. Am. Stat. Assoc. 97, 807–821 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Laskey, K.B., Myers, J.W.: Population Markov Chain Monte Carlo. Mach. Learn. 50, 175–196 (2003)CrossRefzbMATHGoogle Scholar
  54. 54.
    Martín, F., Moreno, L., Muñoz, M.L., Blanco, D.: Initial population size estimation for a Differential-Evolution-based global localization filter. Int. J. Robot. Autom. 29(3), 245–258 (2014)Google Scholar
  55. 55.
    Zaharie, D.: Critical values for the control parameters of differential evolution algorithms (2002)Google Scholar
  56. 56.
    Goldberg, D.E.: Genetic algorithm in search, optimization and machine learning. Addison Wesley Publishing Company (1989)Google Scholar
  57. 57.
    Waagepetersen, R., Sorensen, D.: A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping. Int. Stat. Rev. 69, 49–61 (2001)CrossRefzbMATHGoogle Scholar
  58. 58.
    Gelman, A., Carlin, J.B., Stern, H.S., D.B.R.: Bayesian data analysis, 2nd edn. Chapman & Hall, London (2004)Google Scholar
  59. 59.
    Se, S., Lowe, D.G., Little, J.J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robot. 21, 3 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Luis Moreno
    • 1
  • Fernando Martín
    • 1
    Email author
  • María Luisa Muñoz
    • 2
  • Santiago Garrido
    • 1
  1. 1.Carlos III UniversityMadridSpain
  2. 2.Universidad PolitécnicaMadridSpain

Personalised recommendations