Advertisement

Journal of Intelligent & Robotic Systems

, Volume 81, Issue 3–4, pp 443–469 | Cite as

Robust Model Predictive Flight Control of Unmanned Rotorcrafts

  • Kostas Alexis
  • Christos Papachristos
  • Roland Siegwart
  • Anthony Tzes
Article

Abstract

This paper addresses the problem of robust flight control of unmanned rotorcrafts, by proposing and experimentally evaluating a real–time robust model predictive control scheme in various challenging conditions, aiming to capture the demanding nature of the potential requirements for their efficient and safe integration in real–life operations. The control derivation process is based on state space representations applicable in most rotorcraft configurations and incorporate the effects of external disturbances. Exploiting this modeling approach, two different unmanned rotorcraft configurations are presented and experimentally utilized. The formulated control strategy consists of a receding horizon scheme, the optimization process of which employs the minimum peak performance measure, while incorporating and accounting for the modeled dynamics and input and state constraints. This strategy aims to ensure the minimum possible deviation subject to the worst–case disturbance, while robustly respecting and satisfying the physical limitations of the system, or a set of mission-related requirements, as encoded in the constraints. The proposed framework is further augmented in order to provide obstacle avoidance capabilities into a unified scheme. Multiparametric methods were utilized in order to provide an explicit solution to the controller computation optimization problem, therefore allowing for fast real–time execution and seamless integration into any digital avionics system. The efficiency of the proposed strategy is validated via several experimental case studies on the two unmanned rotorcraft platforms. The experiments set consists of: trajectory tracking subject to atmospheric disturbances, slung load operations, fast highly disturbed maneuvers, collisions handling, as well as avoidance of known obstacles.

Keywords

Unmanned aerial systems MPC Robust control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexis, K., Huerzeler, C., Siegwart, R.: Hybrid modeling and control of a coaxial unmanned rotorcraft interacting with its environment through contact. In: 2013 International Conference on Robotics and Automation (ICRA), pp. 5397–5404, Karlsruhe, Germany (2013)Google Scholar
  2. 2.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory Appl. 6(12), 1812–1827 (2012)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Alexis, K., Tzes, A.: Revisited Dos Samara Unmanned Aerial Vehicle: Design and control. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3645–3650 (2012)Google Scholar
  4. 4.
    Ascending Technologies GmbH, http://www.asctec.de/
  5. 5.
    Bemporad, A.: Reducing conservativeness in predictive control of constrained systems with disturbances. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 2 (1998)Google Scholar
  6. 6.
    Bemporad, A.: Modeling, control, and reachability analysis of discrete–time hybrid systems. University of Sienna (2003)Google Scholar
  7. 7.
    Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158 (2007)Google Scholar
  8. 8.
    Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying, Ph.D. dissertation, STI School of Engineering, EPFL, Lausanee (2007)Google Scholar
  9. 9.
    Burri, M., Nikolic, J., Hurzeler, C., Caprari, G., Siegwart, R.: Aerial service robots for visual inspection of thermal power plant boiler systems. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 70–75 (2012)Google Scholar
  10. 10.
    Camacho, E.F., Bordons, C.: Model Predictive Control. Springer (2003)Google Scholar
  11. 11.
    Campo, P.J., Morari, M.: Robust model predictive control. Am. Control Conf. 1987, 1021–1026 (1987)Google Scholar
  12. 12.
    Cheviron, T., Plestan, F., Chriette, A.: A robust guidance and control scheme of an autonomous scale helicopter in presence of wind gusts. Int. J. Control 82(12), 2206 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Dalamagkidis, K., Valavanis, K., Piegl, L.: English Autonomous autorotation of unmanned rotorcraft using nonlinear model predictive control. J. Int. Robot. Syst. 57(1-4), 351–369 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: Advances in Artificial Intelligence, vol. 4830/2007, pp. 1-13 (2007)Google Scholar
  15. 15.
    Flores, G., Escareno, J., Lozano, R., Salazar, S.: Quad-tilting rotor convertible mav: Modeling and real-time hover flight control. J. Int. Robot. Syst. 65, 457–471 (2012)CrossRefGoogle Scholar
  16. 16.
    Forte, F., Naldi, R., Serrani, A., Marconi, L.: Control of modular aerial robots: Combining under- and fully-actuated behaviors. In: IEEE Conference on Decision and Control, pp. 1160–1165 (2012)Google Scholar
  17. 17.
    Girard, A., Howell, A., Hedrick, J.: Border patrol and surveillance missions using multiple unmanned air vehicles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC. (2004)Google Scholar
  18. 18.
    Guerreiro, B., Silvestre, C., Cunha, R.: Terrain avoidance nonlinear model predictive control for autonomous rotorcraft. J. Int. Robot. Syst. 68(1), 69–85 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Han, J., Chen, Y.: Multiple uav formations for cooperative source seeking and contour mapping of a radiative signal field. J. Intell. Robot. Syst., 1–10 (2013). doi: 10.1007/s10846-013-9897-4
  20. 20.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd. Cambridge University Press (2004)Google Scholar
  21. 21.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Int. 17, 185–204 (1981)CrossRefGoogle Scholar
  22. 22.
    Huerzeler, C., Alexis, K., Siegwart, R.: Configurable real–time simulation suite for coaxial rotor uavs. In: 2013 International Conference on Robotics and Automation (ICRA), pp. 309–316. Karlsruhe, Germany (2013)Google Scholar
  23. 23.
    Huerzeler, C.: Modeling and design of unmanned rotorcraft systems for contact based inspection, Ph.D. dissertation, Swiss Federal Institute of Technology Zurich (2013)Google Scholar
  24. 24.
    Hunt, E.R., Hively, W.D., Fujikawa, S.J., Linden, D.S., Daughtry, C.S.T., McCarty, G.W.: Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2(1), 290–305 (2010)CrossRefGoogle Scholar
  25. 25.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Engineering Practice. doi: 10.1016/j.conengprac.2011.06.010 (2011)
  26. 26.
    Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning, arXiv preprint arXiv:1005.0416 (2010)
  27. 27.
    Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29, 2 (2012)CrossRefGoogle Scholar
  28. 28.
    Kerma, M., Mokhtari, A., Abdelaziz, B., Orlov, Y.: Nonlinear h inf control of a quadrotor (uav), using high order sliding mode disturbance estimator. Int. J. Control 85(12), 1876–1885 (2012). doi: 10.1080/00207179.2012.709656 CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Kim, J., Kang, M., Park, S.: Accurate modeling and robust hovering control for a quadrotor VTOL aircraft. J. Int. Robot. Syst. 57(1), 9–26 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kingston, D., Beard, R., Holt, R.: Decentralized perimeter surveillance using a team of uavs. IEEE Trans. Robot. 24(6), 1394–1404 (2008)CrossRefGoogle Scholar
  31. 31.
    Kvasnica, M., Rauova, I., Fikar, M.: Automatic code generation for real-time implementation of model predictive control. In: 2010 IEEE International Symposium on Computer-Aided Control System Design (CACSD), pp. 993–998 (2010)Google Scholar
  32. 32.
    Kvasnica, M.: Real–Time Model Predictive Control via Multi–Parametric Programming: Theory and Tools. VDM Verlag (2009)Google Scholar
  33. 33.
    Laraki, R., Lasserre, J.: Semidefinite programming for minmax problems and games. Math. Program. 131(1–2), 305–332 (2012). doi: 10.1007/s10107-010-0353-y CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Lennart, L.: System Identification Toolbox TM User’s Guide, Mathworks, vol. 3. Apple Hill Drive (2012)Google Scholar
  35. 35.
    Liu, H., Bai, Y., Lu, G., Shi, Z., Zhong, Y.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst., 1–14 (2013). doi: 10.1007/s10846-013-9838-2
  36. 36.
    Liu, H., Li, D., Kim, J., Zhong, Y.: Real-time implementation of decoupled controllers for multirotor aircrafts. J. Intell. Robot. Syst., 73(1–4), 197–207 (2014). doi: 10.1007/s10846-013-9916-5
  37. 37.
    Ljung, L.: System Identification: Theory for the User, 2nd. Prentice Hall, Inc., NJ, USA (1999)Google Scholar
  38. 38.
    Loefberg, J.: Minimax approaches to robust model predictive control, Ph.D. dissertation, Linkoping University, Linkoping, Sweden, 2003. [Online]. Available: http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/PhD812.pdf
  39. 39.
    Cannon, M., Li, S., Cheng, Q., Kouvaritakis, B.: Efficient robust output feedback mpc. In: Proceedings of the 18th IFAC World Congress, vol. 18, pp 7957–7962 (2011)Google Scholar
  40. 40.
    Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering methods with Flight-Test examples. American Institute of Aeronautics and Astronautics (AIAA)Google Scholar
  41. 41.
    Merz, T., Kendoul, F.: Beyond visual range obstacle avoidance and infrastructure inspection by an autonomous helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, 4953–4960 (2011)Google Scholar
  42. 42.
    Nicol, C., Macnab, C., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. Mechatronics 21(6), 927–938 (2011)CrossRefGoogle Scholar
  43. 43.
    Orukpe, P., Jaimoukha, I.: A semidefinite relaxation for the quadratic minimax problem with application to hinf model predictive control. In: 2007 46th IEEE Conference on Decision and Control, 177–181 (2007)Google Scholar
  44. 44.
    Papachristos, C., Alexis, K., Tzes, A.: Model predictive hovering–translation control of an unmanned tri–tiltrotor. In: 2013 International Conference on Robotics and Automation, pp. 5405–5412, Karlsruhe, Germany (2013)Google Scholar
  45. 45.
    Rathinam, S., Kim, Z., Sengupta, R.: Vision-based monitoring of locally linear structures using an unmanned aerial vehicle1. J. Infrastruct. Syst. 14(1), 52–63 (2008)CrossRefGoogle Scholar
  46. 46.
    Mehra, S.G.R.K., Prasanth, R.K.: xv-15 tiltrotor flight control system design using model predictive control. In: IEEE Aerospace Conference. Snowmass at Aspen, CO, USA (1998)Google Scholar
  47. 47.
    Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design. Springer (2014)Google Scholar
  48. 48.
    Rudol, P., Doherty, P.: Human body detection and geolocalization for uav search and rescue missions using color and thermal imagery. In: Aerospace Conference, 2008 IEEE, pp. 1–8 (2008)Google Scholar
  49. 49.
    Ryan, T., Kim, H.: Lmi-based gain synthesis for simple robust quadrotor control. IEEE Trans. Autom. Sci. Eng. 10(4), 1173–1178 (2013)CrossRefGoogle Scholar
  50. 50.
    Self Dual Minimization: SeDuMi, http://sedumi.ie.lehigh.edu/
  51. 51.
    Stephen Boyd, L.V.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  52. 52.
    The MathWorks Inc., Aerospace Blockset 3 User’s Guide (2009)Google Scholar
  53. 53.
    Weiss, S., Achtelik, M., Lynen, S., Chli, M., Siegwart, R.: Real-time onboard visual-inertial state estimation and self-calibration of mavs in unknown environments. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 957–964 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kostas Alexis
    • 1
  • Christos Papachristos
    • 2
  • Roland Siegwart
    • 1
  • Anthony Tzes
    • 2
  1. 1.Autonomous Systems Lab, ETH ZurichZurichSwitzerland
  2. 2.Electrical and Computer Engineering DepartmentUniversity of PatrasPatrasGreece

Personalised recommendations