Advertisement

Journal of Intelligent & Robotic Systems

, Volume 81, Issue 3–4, pp 287–300 | Cite as

Foot Force Based Reactive Stability of Multi-Legged Robots to External Perturbations

  • Mahdi Agheli
  • Stephen S. Nestinger
Article

Abstract

Many environments and scenarios contain rough and irregular terrain and are inaccessible or hazardous for humans. Robotic automation is preferred in lieu of placing humans at risk. Legged locomotion is more advantageous in traversing complex terrain but requires constant monitoring and correction to maintain system stability. This paper presents a multi-legged reactive stability control method for maintaining system stability under external perturbations. Assuming tumbling instability and sufficient friction to prevent slippage, the reactive stability control method is based solely on the measured foot forces normal to the contact surface, reducing computation time and sensor information. Under external perturbations, the reactive stability control method opts to either displace the CG or the foot contacts of the robot based on the measured foot force distribution. Details describing the reactive stability control method are discussed including algorithms and an implementation example. An experimental demonstration of the reactive stability control method is presented. The experiment was conducted on a hexapod robot platform retrofitted with a tiny computer and force sensitive resistors to measure the foot forces. The experimental results show that the presented reactive stability control strategy prevents the robot from tipping over under external perturbation.

Keywords

Reactive stability FFSM Normal foot force Multi-legged robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arevalo, J.C., Sanz-Merodio, D., Garcia, E.: Reactive humanoid walking algorithm for occluded terrain. In: Proc. of the First Iberian Robotics Conf., pp. 397–410 (2014)Google Scholar
  2. 2.
    Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 2554–2561 (2013)Google Scholar
  3. 3.
    Kim, J.Y.: Dynamic balance control algorithm of a six-legged walking robot, little crabster. J. Intell. Rob. Syst., 1–18 (2014)Google Scholar
  4. 4.
    Arkin, R.C.: Behavior-based robotics. MIT press (1998)Google Scholar
  5. 5.
    Solomon, J.H., Locascio, M.A., Hartmann, M.J.: Linear reactive control for efficient 2D and 3D bipedal walking over rough terrain. Adapt. Behav. 21(1), 29–46 (2013)CrossRefGoogle Scholar
  6. 6.
    Playter, R., Buehler, M., Raibert, M.: Bigdog. In: Proc. of the SPIE 6230 Unmanned Systems Technology VIII, 62302O (2006)Google Scholar
  7. 7.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al.: Bigdog, the rough-terrain quadruped robot. In: Proc. of the 17th World Congress, pp. 10,823–10,825 (2008)Google Scholar
  8. 8.
    Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for the littledog quadruped walking on rough terrain. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1467–1473 (2007)Google Scholar
  9. 9.
    Gay, S., Santos-Victor, J., Ijspeert, A.: Learning robot gait stability using neural networks as sensory feedback function for central pattern generators. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 194–201 (2013)Google Scholar
  10. 10.
    Zhang, H., Liu, Y., Zhao, J., Chen, J., Yan, J.: Development of a bionic hexapod robot for walking on unstructured terrain. J. Bionic Eng. 11(2), 176–187 (2014)CrossRefGoogle Scholar
  11. 11.
    Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Rob. Comput. Integr. Manuf. 29(2), 400–416 (2013)CrossRefGoogle Scholar
  12. 12.
    Roy, S.S., Pratihar, D.K.: Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. J. Intell. Rob. Syst. 74(3-4), 663–688 (2014)CrossRefGoogle Scholar
  13. 13.
    Li, M., Zhang, X., Zhang, J., Zhang, M.: Free gait generation based on discretization for a hexapod robot. In: Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 2334–2338 (2013)Google Scholar
  14. 14.
    McGhee, R., Frank, A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sreenivasan, S.V., Wilcox, B.H.: Stability and traction control of an actively actuated micro-rover. J. Rob. Syst. 11(6), 487–502 (1994)CrossRefGoogle Scholar
  16. 16.
    Papadopoulos, E., Rey, D.: A new measure of tipover stability margin for mobile manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 3111 –3116 (1996)Google Scholar
  17. 17.
    Ghasempoor, A., Sepehri, N.: A measure of machine stability for moving base manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2249 –2254 (1995)Google Scholar
  18. 18.
    Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: Generalized stability criterion for walking vehicles. In: Proc. of Int. Conf. on Climbing and Walking Robots, pp. 71–76 (1998)Google Scholar
  19. 19.
    Garcia, E, de Santos, P.A.G.: A new dynamic energy stability margin for walking machines. In: Proc. of Int. Conf. on Advanced Robotics, pp. 1014–1019 (2003)Google Scholar
  20. 20.
    Kang, D.O., Lee, Y.J., Lee, S.H., Hong, Y.S., Bien, Z.: A study on an adaptive gait for a quadruped walking robot under external forces. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 2777–2782 (1997)Google Scholar
  21. 21.
    Kim, J., Chung, W.K., Youm, Y., Lee, B.: Real-time ZMP compensation method using null motion for mobile manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1967–1972 (2002)Google Scholar
  22. 22.
    Yoneda, K., Hirose, S.: Tumble stability criterion of integrated locomotion and manipulation. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 870 –876 (1996)Google Scholar
  23. 23.
    Agheli, M., Nestinger, S.S.: Study of the foot force stability margin for multi-legged/wheeled robots under dynamic situations. In: Proc. of the IEEE/ASME Int. Conf. on Mechatronics and Embedded Systems and Applications, pp. 99–104 (2012)Google Scholar
  24. 24.
    Agheli, M., Nestinger, S.S.: Foot force criterion for robot stability. In: Proc. of the Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, pp. 417–424 (2012)Google Scholar
  25. 25.
  26. 26.
    Gumstix, Inc.: http://www.gumstix.com
  27. 27.
    Lewinger, W.A., Branicky, M.S., Quinn, R.D.: Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proc. of Int. Conf. on Climbing and Walking Robots, pp. 65–72 (2006)Google Scholar
  28. 28.
    Figliolini, G., Stan, S., Rea, P.: Motion analysis of the leg tip of a six-legged walking robot. In: Proc. of the IFToMM World Congress, Besanċon, France (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations