Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Issue 3–4, pp 609–623 | Cite as

A Methodology for Creating an Adapted Command Language for Driving an Intelligent Wheelchair

  • Brígida Mónica FariaEmail author
  • Luís Paulo Reis
  • Nuno Lau
Article

Abstract

Intelligent wheelchairs (IW) are technologies that can increase the autonomy and independence of elderly people and patients suffering from some kind of disability. Nowadays the intelligent wheelchairs and the human-machine studies are very active research areas. This paper presents a methodology and a Data Analysis System (DAS) that provides an adapted command language to an user of the IW. This command language is a set of input sequences that can be created using inputs from an input device or a combination of the inputs available in a multimodal interface. The results show that there are statistical evidences to affirm that the mean of the evaluation of the DAS generated command language is higher than the mean of the evaluation of the command language recommended by the health specialist (p value = 0.002) with a sample of 11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent wheelchair interface to the user even when the users present heterogeneous and severe physical constraints.

Keywords

Intelligent Wheelchair Command Language User Modeling Data Analysis System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faria, B.M., Reis, L.P., Lau, N.: A Survey On Intelligent Wheelchair Prototypes And Simulators, WorldCist 2014, AISC 275, vol. 1 Springer. Madeira, 545–557 (2014)Google Scholar
  2. 2.
    Braga, R., Petry, M., Moreira, A.P., Reis, L.P.: Concept and design of the intellWheels platform for developing intelligent wheelchairs. Informatics in Control, Automation and Robotics, 191–203 (2009)Google Scholar
  3. 3.
    Braga, R., Petry, M., Reis, P., Moreira, A.P.: A modular development platform for intelligent wheelchair. J. Reinf. Plast. Compos. 48(9), 1061–1076 (2011)Google Scholar
  4. 4.
    Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: Evaluation of Distinct Input Methods of an Intelligent Wheelchair in Simulated and Real Environments: A Performance and Usability Study, Assist. Technol. J., RESNA, Taylor and Francis 25(2), 88–98 (2013)Google Scholar
  5. 5.
    Faria, B.M., Reis, L.P., Lau, N., Soares, J.C., Vasconcelos, S.: Patient Classification and Automatic Configuration of an Intelligent Wheelchair, Communications in Computer and Information Science 358, pp 268–282. Springer-Verlag (2013)Google Scholar
  6. 6.
    Faria, B.M., Reis, L.P., Lau, N.: Adapted Control Methods for Cerebral Palsy Users of an Intelligent Wheelchair Manual, Special Issue on Autonomous Robot Systems, Journal of Intelligent and Robotic Systems, Springer, ISSN, pp 1573–0409 (2014)Google Scholar
  7. 7.
    Faria, B.M., Reis, L.P., Lau, N.: Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair, IEEE International Conference Data Mining 2012, Biological D.M. Applied Healthcare Works, Bruxelas, page 33–40 (2012)Google Scholar
  8. 8.
    Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: A methodology for creating intelligent wheelchair users’ profiles. Int. Conf. Agents Artif. Intell. 6(8), 171–179 (2012)Google Scholar
  9. 9.
    Sasaki, Y., Fellow, R.: The truth of the F-measure, Manchester: MIB-School of Computer Science. University of Manchester (2007)Google Scholar
  10. 10.
    Coppin, B.: Artificial Intelligence Illuminated. Jones & Bartlett Learning, Canada (2004)Google Scholar
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Glover, F.: Tabu search (Part I). ORSA J. Comput. 1, 190–206 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Holland, J.H.: Adaptation in natural and artificial systems. University Michigan Press (1975)Google Scholar
  14. 14.
    Palisano, R.J., Rosenbaum, P., Bartlett, D., Livingston, M.H.: Content validity of the expanded and revised Gross Motor Function Classification System, D. Med. Child Neurol. 50(10), 744–750 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Brígida Mónica Faria
    • 1
    • 2
    • 3
    Email author
  • Luís Paulo Reis
    • 2
    • 4
  • Nuno Lau
    • 3
    • 5
  1. 1.Escola Superior Tecnologia de Saúde do Porto / Instituto Politécnico do Porto (ESTSP/IPP)Vila Nova de GaiaPortugal
  2. 2.Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC)PortoPortugal
  3. 3.Institute Engenharia, Electrónica e Telemática de Aveiro (IEETA)AveiroPortugal
  4. 4.Department de Sistemas de InformaçãoEscola de Engenharia da Universidade do Minho (DSI/EEUM)GuimarãesPortugal
  5. 5.Department de Electrónica, Telecomunicações e Informática da Universidade de Aveiro (DETI/UA)AveiroPortugal

Personalised recommendations